精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$,$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,f(x)=|$\overrightarrow{a}-x\overrightarrow{e}$|是定义在R上的函数,
(1)若f(x)≥f(1)对所有x∈R都成立,求证:($\overrightarrow{a}-\overrightarrow{e}$)⊥$\overrightarrow{e}$;
(2)求当x取何值时,f(x)取到最小值.

分析 (1)求出f(x)的解析式,根据二次函数的性质,令对称轴为x=1即可得出$\overrightarrow{a}•\overrightarrow{e}$=1,
从而可得($\overrightarrow{a}-\overrightarrow{e}$)•$\overrightarrow{e}$=0;
(2)利用二次函数的性质即可得出结论.

解答 解:(1)证明:∵($\overrightarrow{a}-x\overrightarrow{e}$)2=$\overrightarrow{a}$2-2x$\overrightarrow{a}•\overrightarrow{e}$+x2,∴f(x)=$\sqrt{{\overrightarrow{a}}^{2}-2x\overrightarrow{a}•\overrightarrow{e}+{x}^{2}}$,
∵f(x)≥f(1)对所有x∈R都成立,
∴当x=1时,x2-2x$\overrightarrow{a}•\overrightarrow{e}$+${\overrightarrow{a}}^{2}$取得最小值,
∴$\overrightarrow{a}•\overrightarrow{e}$=1,
∴($\overrightarrow{a}-\overrightarrow{e}$)•$\overrightarrow{e}$=$\overrightarrow{a}•\overrightarrow{e}$-${\overrightarrow{e}}^{2}$=1-1=0,
∴($\overrightarrow{a}-\overrightarrow{e}$)⊥$\overrightarrow{e}$.
(2)∵x2-2x$\overrightarrow{a}•\overrightarrow{e}$+${\overrightarrow{a}}^{2}$=(x-$\overrightarrow{a}•\overrightarrow{e}$)2+${\overrightarrow{a}}^{2}$-($\overrightarrow{a}•\overrightarrow{e}$)2
∴当x=$\overrightarrow{a}•\overrightarrow{e}$时,f(x)取得最小值.

点评 本题考查了平面向量的数量积运算,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知角α的顶点在原点,始边与x轴的正半轴重合
(1)若终边经过点P(-1,2),求sin αcos α的值;
(2)若角α的终边在直线y=-3x上,求tan α+$\frac{3}{cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f′(x)是奇函数y=f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)+f(x)>0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a>0,b>0,且42a+b=2ab,则a+b的最小值是(  )
A.12B.6+2$\sqrt{2}$C.6+4$\sqrt{2}$D.6+4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sinx-$\frac{2}{5π}$x零点的个数是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},且函数$y=a{x^3}+m{x^2}+x+\frac{c}{2}$在区间$({\frac{1}{2},1})$上不是单调函数,则实数m的取值范围是(  )
A.$(-2,-\sqrt{3})$B.$[{-3,-\sqrt{3}}]$C.$({-∞,-2})∪({\sqrt{3},+∞})$D.$({-∞,-2})∪({-\sqrt{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同.三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象.刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚.”很可惜,刘老师的这种猜法,只猜对了一句,据此可以推知张博源、高家铭和刘雨恒分别研究的是(  )
A.曹雪芹、莎士比亚、雨果B.雨果、莎士比亚、曹雪芹
C.莎士比亚、雨果、曹雪芹D.曹雪芹、雨果、莎士比亚

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.经过点(1,1)和(-2,4)的直线的一般式方程是x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,有下列结论:
①若a2=b2+c2+bc,则∠A为60°;
②若a2+b2>c2,则△ABC为锐角三角形;
③若A:B:C=1:2:3,则a:b:c=1:2:3,
④在△ABC中,b=2,B=45°,若这样的三角形有两个,则边a的取值范围为(2,2$\sqrt{2}$)
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案