精英家教网 > 高中数学 > 题目详情
20.设函数f′(x)是奇函数y=f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)+f(x)>0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

分析 由已知当x>0时总有xf′(x)+f(x)>0成立,可判断函数g(x)为增函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(-∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,而不等式f(x)>0等价于xg(x)>0,分类讨论即可求出

解答 解:设g(x)=xf(x),则g(x)的导数为:g′(x)=f(x)+xf′(x)
∵当x>0时,xf′(x)+f(x)>0,
即当x>0时,g′(x)恒大于0,
∴当x>0时,函数g(x)为增函数,
∵f(x)为奇函数
∴函数g(x)为定义域上的偶函数
又∵g(-1)=-1×f(-1)=0,
∵f(x)>0,
∴当x>0时,g(x)>0,当x<0时,g(x)<0,
∴当x>0时,g(x)>0=g(1),当x<0时,g(x)<0=g(-1),
∴x>1或-1<x<0
故使得f(x)>0成立的x的取值范围是(-1,0)∪(1,+∞),
故选:D.

点评 本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知虚数z满足|2z+5|=|z+10|.
(1)求|z|;
(2)是否存在实数m,是$\frac{z}{m}$+$\frac{m}{z}$为实数,若存在,求出m的值;若不存在,说明理由;
(3)若(1-2i)z在复平面内对应的点在第一、三象限的角平分线上,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.k>3是方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示双曲线的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}中,a1=1,前100项和S100=10000.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{{a_n}+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若数列{an},{bn}的通项公式分别是an=(-1)2017•a,bn=2+$\frac{{{{(-1)}^{n+2018}}}}{n}且{a_n}<{b_n}$对任意n∈N*恒成立,则常数a的取值范围是[-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=sin(2ωx+\frac{π}{3})+\frac{{\sqrt{3}}}{2}+a(ω>0)$,且f(x)的图象在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$.
(1)求ω的值;
(2)如果f(x)在区间$[-\frac{π}{3},\frac{5π}{6}]$上的最小值为$\sqrt{3}$,求a的值;
(3)若g(x)=f(x)-a,则g(x)的图象可由y=sinx(x∈R)的图象经过怎样的变换而得到?并写出g(x)的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,f(x)=|$\overrightarrow{a}-x\overrightarrow{e}$|是定义在R上的函数,
(1)若f(x)≥f(1)对所有x∈R都成立,求证:($\overrightarrow{a}-\overrightarrow{e}$)⊥$\overrightarrow{e}$;
(2)求当x取何值时,f(x)取到最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆锥的侧面展开图是一个半圆;
(1)求圆锥的母线与底面所成的角;
(2)过底面中心O1且平行于母线AB的截平面,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为p的抛物线,求圆锥的全面积;
(3)过底面点C作垂直且于母线AB的截面,若截面与圆锥侧面的交线是长轴为2a的椭圆,求椭圆的面积(椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的面积S=πab).

查看答案和解析>>

同步练习册答案