精英家教网 > 高中数学 > 题目详情
10.已知虚数z满足|2z+5|=|z+10|.
(1)求|z|;
(2)是否存在实数m,是$\frac{z}{m}$+$\frac{m}{z}$为实数,若存在,求出m的值;若不存在,说明理由;
(3)若(1-2i)z在复平面内对应的点在第一、三象限的角平分线上,求复数z.

分析 (1)设z=x+yi(x,y∈R且y≠0),代入|2z+5|=|z+10|化简即可得出.
(2)利用复数的运算法则、复数相等即可得出.
(3)利用复数相等、方程组的解法即可得出.

解答 解:(1)设z=x+yi(x,y∈R且y≠0),
由|2z+5|=|z+10|得:(2x+5)2+4y2=(x+10)2+y2
化简得:x2+y2=25,所以|z|=5.…(2分)
(2)∵$\frac{z}{m}$+$\frac{m}{z}$=$\frac{x+yi}{m}$+$\frac{m}{x+yi}$=$\frac{x+yi}{m}$+$\frac{m(x-yi)}{{x}^{2}+{y}^{2}}$=$(\frac{x}{m}+\frac{mx}{{x}^{2}+{y}^{2}})$+$(\frac{y}{m}-\frac{my}{{x}^{2}+{y}^{2}})$i为实数,
∴$\frac{y}{m}-\frac{my}{{{x^2}+{y^2}}}=0$,又y≠0且x2+y2=25,∴$\frac{1}{m}-\frac{m}{25}=0$,解得m=±5.…(6分)
(3)由(1-2i)z=(1-2i)(x+yi)=(x+2y)+(y-2x)i及已知得:x+2y=y-2x,即y=-3x,
代入x2+y2=25,解得:$\left\{\begin{array}{l}x=\frac{{\sqrt{10}}}{2}\\ y=-\frac{{3\sqrt{10}}}{2}\end{array}\right.$或$\left\{\begin{array}{l}x=-\frac{{\sqrt{10}}}{2}\\ y=\frac{{3\sqrt{10}}}{2}\end{array}\right.$,
故$z=\frac{{\sqrt{10}}}{2}-\frac{{3\sqrt{10}}}{2}i$或$z=-\frac{{\sqrt{10}}}{2}+\frac{{3\sqrt{10}}}{2}i$.…(10分)

点评 本题考查了复数的运算法则、复数相等、模的计算公式、方程组的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.命题“?x0∈R,x02>0”的否定是?x∈R,x2≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线$\frac{x}{a}+\frac{y}{b}$=1(a>0,b>0)过点(1,1),则a+4b的最小值等于(  )
A.2B.8C.9D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线S的一个焦点与抛物线y2=12x的焦点相同,如果$y=-\sqrt{2}x$是双曲线S的一条渐近线,那么双曲线S的方程为$\frac{x^2}{3}-\frac{y^2}{6}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知等比数列{an}中,a1=2且a1+a2=6.求数列{an}的前n项和Sn的值;
(2)已知tanθ=3,求$\frac{{2{{cos}^2}\frac{θ}{2}+sinθ-1}}{sinθ-cosθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若正实数{an}满足a+2b=1,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sinx-$\sqrt{3}$cosx(x∈R)的最大值是(  )
A.1B.2C.$-\frac{1}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知角α的顶点在原点,始边与x轴的正半轴重合
(1)若终边经过点P(-1,2),求sin αcos α的值;
(2)若角α的终边在直线y=-3x上,求tan α+$\frac{3}{cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f′(x)是奇函数y=f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)+f(x)>0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

查看答案和解析>>

同步练习册答案