¾«Ó¢¼Ò½ÌÍøÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿÌâ10·Ö£¬¹²¼Æ20·Ö£®
A¡¢Èçͼ£¬ABΪ¡ÑOµÄÖ±¾¶£¬BCÇСÑOÓÚB£¬AC½»¡ÑOÓÚP£¬CE=BE£¬EÔÚBCÉÏ£®ÇóÖ¤£ºPEÊÇ¡ÑOµÄÇÐÏߣ®
B¡¢ÉèMÊÇ°Ñ×ø±êƽÃæÉϵĵãµÄºá×ø±êÉ쳤µ½2±¶£¬×Ý×ø±êÉ쳤µ½3±¶µÄÉìѹ±ä»»£®
£¨1£©Çó¾ØÕóMµÄÌØÕ÷Öµ¼°ÏàÓ¦µÄÌØÕ÷ÏòÁ¿£»
£¨2£©ÇóÄæ¾ØÕóM-1ÒÔ¼°ÍÖÔ²
x2
4
+
y2
9
=1
ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³Ì£®
C¡¢ÒÑ֪ijԲµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ2-4
2
¦Ñcos(¦È-
¦Ð
4
)+6=0
£®
£¨¢ñ£©½«¼«×ø±ê·½³Ì»¯ÎªÆÕͨ·½³Ì£»²¢Ñ¡ÔñÇ¡µ±µÄ²ÎÊýд³öËüµÄ²ÎÊý·½³Ì£»
£¨¢ò£©ÈôµãP£¨x£¬y£©ÔÚ¸ÃÔ²ÉÏ£¬Çóx+yµÄ×î´óÖµºÍ×îСֵ£®
D¡¢Èô¹ØÓÚxµÄ²»µÈʽ|x+2|+|x-1|¡ÝaµÄ½â¼¯ÎªR£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º±¾Ì⿼²é¾ØÕóµÄ±ä»»ÖеÄÉìѹ±ä»»£¬ºá×ø±ê¡¢×Ý×ø±êÀ­ÉìºÍѹËõ±ä»»Óë¾ØÕóÖÐÊýµÄ¶ÔÓ¦¹Øϵ£»Äæ¾ØÕó±ä»»¹«Ê½
½â´ð£º¾«Ó¢¼Ò½ÌÍø½â£ºA¡¢Ö¤Ã÷£ºÈçͼ£¬Á¬½ÓOP¡¢BP£®
¡ßABÊÇ¡ÑOµÄÖ±¾¶£¬¡à¡ÏAPB=90¡ã£®
ÓÖ¡ßCE=BE£¬¡àEP=EB£®¡à¡Ï3=¡Ï1£®
¡ßOP=OB£¬¡à¡Ï4=¡Ï2£®
¡ßBCÇСÑOÓÚµãB£¬¡à¡Ï1+¡Ï2=90¡ã£®
¡Ï3+¡Ï4=90¡ã£®
ÓÖ¡ßOPΪ¡ÑOµÄ°ë¾¶£¬
¡àPEÊÇ¡ÑOµÄÇÐÏߣ®
B¡¢£¨1£©ÓÉÌõ¼þµÃ¾ØÕóM=
20
03
£¬
ËüµÄÌØÕ÷ֵΪ2ºÍ3£¬¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿Îª
1
0
¼°
0
1
£»
£¨2£©M-1=
1
2
0
0
1
3
£¬
ÍÖÔ²
x2
4
+
y2
9
=1
ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³ÌΪx2+y2=1£®
C¡¢½â£º£¨¢ñ£©x2+y2-4x-4y+6=0£»
x=2+
2
cos¦Á
y=2+
2
sin¦Á
£¨¦ÁΪ²ÎÊý£©

£¨¢ò£©x+y=4+2sin£¨¦Á+
¦Ð
4
£©×î´óÖµ6£¬×îСֵ2£®

D¡¢½â£ºaСÓÚ|x+2|+|x-1|µÄ×îСֵ¼´¿É£¬
¶øt=|x+2|+|x-1|¡Ý|£¨x+2£©-£¨x-1£©|=3£¬
tmin=3£¬
Ö»Òªa¡Ü3£®
µãÆÀ£º¾ØÕó±ä»»µÄ¼¸ÖÖÐÎʽ£¬ÌØÕ÷ÖµÓëÌØÕ÷ÏòÁ¿µÄ¶ÔÓ¦¹Øϵ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌâÖ½Ö¸¶¨ÇøÓòÄÚ ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Èçͼ£¬Ô²OµÄÖ±¾¶AB=6£¬CΪԲÖÜÉÏÒ»µã£¬BC=3£¬¹ýC×÷Ô²µÄÇÐÏßl£¬¹ýA×÷lµÄ´¹ÏßAD£¬AD·Ö±ðÓëÖ±Ïßl¡¢Ô²½»ÓÚµãD¡¢E£®Çó¡ÏDACµÄ¶ÈÊýÓëÏ߶ÎAEµÄ³¤£®
B£®ÒÑÖª¶þ½×¾ØÕóA=
2a
b0
ÊôÓÚÌØÕ÷Öµ-1µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª
1
-3
£¬Çó¾ØÕóAµÄÄæ¾ØÕó£®

C£®ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ¬ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=-
3
t
y=1+t
£¨tΪ²ÎÊý£¬t¡Ê{R}£©£®ÊÔÇóÇúÏßCÉϵãMµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®
D£®£¨1£©ÉèxÊÇÕýÊý£¬ÇóÖ¤£º£¨1+x£©£¨1+x2£©£¨1+x3£©¡Ý8x3£»
£¨2£©Èôx¡ÊR£¬²»µÈʽ£¨1+x£©£¨1+x2£©£¨1+x3£©¡Ý8x3ÊÇ·ñÈÔÈ»³ÉÁ¢£¿Èç¹ûÈÔ³ÉÁ¢£¬Çë¸ø³öÖ¤Ã÷£»Èç¹û²»³ÉÁ¢£¬Çë¾Ù³öÒ»¸öʹËü²»³ÉÁ¢µÄxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌâÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®
AÑ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ÑÓ³¤¡ÑOµÄ°ë¾¶OAµ½B£¬Ê¹OA=AB£¬DEÊÇÔ²µÄÒ»ÌõÇÐÏߣ¬EÊÇÇе㣬¹ýµãB×÷DEµÄ´¹Ïߣ¬´¹×ãΪµãC£®
ÇóÖ¤£º¡ÏACB=
1
3
¡ÏOAC£®
BÑ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóA=
.
11
21
.
£¬ÏòÁ¿
¦Â
=
1
2
£®ÇóÏòÁ¿
a
£¬Ê¹µÃA2
a
=
¦Â
£®
CÑ¡ÐÞ4-3£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÍÖÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=
a
3cos2¦È+4sin2¦È
£¬½¹¾àΪ2£¬ÇóʵÊýaµÄÖµ£®
DÑ¡ÐÞ4-4£º²»µÈʽѡ½²
ÒÑÖªº¯Êýf£¨x£©=£¨x-a£©2+£¨x-b£©2+£¨x-c£©2+
(a+b+c)2
3
£¨a£¬b£®cΪʵÊý£©µÄ×îСֵΪm£¬Èôa-b+2c=3£¬ÇómµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡×öÌ⣩ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡ÑOµÄ°ë¾¶OB´¹Ö±ÓÚÖ±¾¶AC£¬MΪAOÉÏÒ»µã£¬BMµÄÑÓ³¤Ïß½»¡ÑOÓÚN£¬¹ý
NµãµÄÇÐÏß½»CAµÄÑÓ³¤ÏßÓÚP£®
£¨1£©ÇóÖ¤£ºPM2=PA•PC£»
£¨2£©Èô¡ÑOµÄ°ë¾¶Îª2
3
£¬OA=
3
OM£¬ÇóMNµÄ³¤£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÇúÏßx2+4xy+2y2=1ÔÚ¶þ½×¾ØÕóM=
.
1a
b1
.
µÄ×÷ÓÃϱ任ΪÇúÏßx2-2y2=1£¬ÇóʵÊýa£¬bµÄÖµ£»
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
y=-1-
3
5
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
Éèa£¬b£¬c¾ùΪÕýʵÊý£®
£¨1£©Èôa+b+c=1£¬Çóa2+b2+c2µÄ×îСֵ£»
£¨2£©ÇóÖ¤£º
1
2a
+
1
2b
+
1
2c
¡Ý
1
b+c
+
1
c+a
+
1
a+b
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²20·Ö£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬PAÇСÑOÓÚµãA£¬DΪPAµÄÖе㣬¹ýµãDÒý¸îÏß½»¡ÑOÓÚB¡¢CÁ½µã£®ÇóÖ¤£º¡ÏDPB=¡ÏDCP£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÉèM=
.
10
02
.
£¬N=
.
1
2
0
01
.
£¬ÊÔÇóÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³Ì£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
t
y=-1-
3
5
t
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â²»µÈʽ£º|2x+1|-|x-4|£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

 Ñ¡×öÌ⣨ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×öÁ½Ì⣬²¢½«Ñ¡×÷±ê¼ÇÓÃ2BǦ±ÊÍ¿ºÚ£¬Ã¿Ð¡Ìâ10·Ö£¬¹²20·Ö£¬ÇëÔÚ´ðÌâÖ¸¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裩£®
A¡¢£¨Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬BDΪ¡ÑOµÄÖ±¾¶£¬AB=AC£¬AD½»BCÓÚE£¬ÇóÖ¤£ºAB2=AE•AD
B¡¢£¨Ñ¡ÐÞ4-2£º¾ØÐÎÓë±ä»»£©
ÒÑÖªa£¬bʵÊý£¬Èç¹û¾ØÕóM=
1a
b2
Ëù¶ÔÓ¦µÄ±ä»»½«Ö±Ïß3x-y=1±ä»»³Éx+2y=1£¬Çóa£¬bµÄÖµ£®
C¡¢£¨Ñ¡ÐÞ4-4£¬£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÉèM¡¢N·Ö±ðÊÇÇúÏߦÑ+2sin¦È=0ºÍ¦Ñsin£¨¦È+
¦Ð
4
£©=
2
2
ÉϵĶ¯µã£¬ÅжÏÁ½ÇúÏßµÄλÖùØϵ²¢ÇóM¡¢N¼äµÄ×îС¾àÀ룮
D¡¢£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
Éèa£¬b£¬cÊDz»ÍêÈ«ÏàµÈµÄÕýÊý£¬ÇóÖ¤£ºa+b+c£¾
ab
+
bc
+
ca
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸