精英家教网 > 高中数学 > 题目详情

【题目】(2015·新课标I卷)Sn为数列{an}的前n项和.已知an>0,an2+2an=4Sn+3,
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和.

【答案】
(1)

2n+1.


(2)


【解析】
(Ⅰ)当n=1时,a12+2a1=4S1+3=4a1+3,因为an>0, 所以a1=3, 当n2时,an2+an-an-12-an-1=4Sn+3-4Sn-1-3=4an, 即(an+an-1)(an-an-1)=2(an+an-1), 因为an>0, 所以an-an-1=2.
所以数列{an}是首项为3,公差为2的等比数列。所以an=2n+1,
(Ⅱ)由(Ⅰ)知,bn==,
所以数列{bn}q前n项和为b1+b2+..............+bn==.
【考点精析】解答此题的关键在于理解等差数列的前n项和公式的相关知识,掌握前n项和公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,B,E,F分别是AA1 , CC1的中点,且BE⊥B1F.

(Ⅰ)求证:B1F⊥EC1
(Ⅱ)求二面角C1﹣BE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx+a(1-x),问:(1)讨论f(x) 的单调性;(2)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.
(1)(I)讨论f(x) 的单调性;
(2)(II)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,D是BC上的点,AD平分BAC,ABD面积是ADC面积的2倍
(1)(I)求
(2)(II)若AD=1,DC=,求BD和AC的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015新课标II)在直角坐标系xoy中,曲线C1(t为参数,t≠0),其中0,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=2sinC3:=2cos
(1)(Ⅰ)求C2与C1交点的直角坐标
(2)(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·新课标I卷)选修4-1:几何证明选讲
如图AB是⊙O直径,AC是⊙O切线,BC交⊙O与点E.

(1)若DAC中点,求证:DE是⊙O切线;
(2)若OA=CE,求∠ACB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱台上、下底面分别是边长为3和6的正方形,,且
底面,点分别在棱上.
(1)若是的中点,证明:;
(2若//平面,二面角的余弦值为,求四面体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)设数列{an}的前n项和Sn=2an-a1 , 且a1, a2+1, a3成等差数列.
(1)求数列{an}的通项公式;
(2)记数列{}的前n项和Tn , 求得|Tn-1|<成立的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移个单位长度.
(1)求函数的解析式,并求其图像的对称轴方程;
(2)已知关于X的方程内有两个不同的解,
(1)求实数M的取值范围:
(2)证明:

查看答案和解析>>

同步练习册答案