精英家教网 > 高中数学 > 题目详情
直角坐标系xOy和极坐标系Ox的原点与极点重合,x轴正半轴与极轴重合,单位长度相同,圆C的参数方程为
x=2cosθ
y=2sinθ+1
(θ为参数),直线l的极坐标方程为θ=
π
4
(ρ∈R).
(1)求圆C及直线l的普通方程;
(2)设直线l与曲线C交于A,B两点,求
CA
CB
的值.
考点:圆的参数方程,简单曲线的极坐标方程
专题:选作题,坐标系和参数方程
分析:(1)利用平方关系,消去参数可得圆的方程,由直线l的极坐标方程为θ=
π
4
,可得直角坐标方程;
(2)求出圆心C(0,1)到直线x-y=0的距离,以及cos∠ACB的值,利用数量积的公式即可得到结论.
解答: 解:(1)圆C的参数方程为
x=2cosθ
y=2sinθ+1
(θ为参数),利用平方关系,消去参数可得圆的方程为x2+(y-1)2=4,直线l的极坐标方程为θ=
π
4
的直角坐标方程为x-y=0;
(2)由圆的标准方程可知,圆心C(0,1),半径r=2,
∵圆心C(0,1)到直线x-y=0的距离为
2
2

设∠CAB=2α,则cosα=
2
4

∴cos2α=2×
2
16
-1=-
7
8

CA
CB
=4×(-
7
8
)=-
7
2
点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,极坐标方程与直角坐标方程的互化,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中,点P(4,
3
)到圆C:ρ=4cos(θ+
π
3
)上一点距离的最小值为(  )
A、8B、10C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
cosx
x
(x>0),g(x)=sinx-ax(x>0).
(Ⅰ)函数f(x)=
cosx
x
(x>0)的零点从小到大排列,记为数列{xn},求{xn}的前n项和Sn
(Ⅱ)若f(x)≥g(x)在x∈(0,+∞)上恒成立,求实数a的取值范围;
(Ⅲ)设点P是函数φ(x)与ω(x)图象的交点,若直线l同时与函数φ(x),ω(x)的图象相切于P点,且函数φ(x),ω(x)的图象位于直线l的两侧,则称直线l为函数φ(x),ω(x)的分切线.
探究:是否存在实数a,使得函数f(x)与g(x)存在分切线?若存在,求出实数a的值,并写出分切线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下表是某厂1~4月份用水量(单位:百吨)的一组数据:
月份x1234
用水量y4.5432.5
由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是
y
=-0.7x+a,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(5
3
cosx,cosx),
b
=(sinx,2cosx),函数f(x)=
a
b
+|
b
|2+
3
2

(1)求x∈[-
π
6
π
2
]时,求函数f(x)的值域.
(2)将y=f(x)的图象向右平移φ(φ>0)个单位后,再将得到的图象向下平移5个单位,得到函数y=g(x)的图象,若函数y=g(x)是偶函数,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,内角A,B,C的对边分别为a,b,c.设
.
m
=(2a,-b),
.
n
=(sinB,
3
),且
.
m
.
n
,则
(1)求角A的大小;
(2)若S△ABC=4
3
,b+c=8,求边a.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工人在一天内加工零件产生的次品数用ξ表示,椐统计,随机变量ξ的概率分布如下:
ξ0123
p0.10.13aa
(1)求a的值和ξ的数学期望;
(2)假设两天内产生的次品数互不影响,求该工人两天内产生的次品数共2个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,设l1∥l2∥l3,AB:BC=3:2,DF=10,则DE=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组情况与频数如下:.
(1)完成频率分布表;
(2)画出频率分布直方图以及频率分布折线图;
(3)据上述图表,估计数据落在[10.95,11.35)范围内的可能性;
(4)数据小于11.20的可能性是百分之几
频率分布表如下:
分组频数频率
[10.75,10.85)30.03
[10.85,10.95)9
[10.95,11.05)130.13
[11.05,11.15)160.16
[11.15,11.25)
[11.25,11.35)200.20
[11.35,11.45)70.07
[11.45,11.55)40.04
[11.55,11.65]0.02
合计1001.00

查看答案和解析>>

同步练习册答案