精英家教网 > 高中数学 > 题目详情
已知椭圆的左焦点为,右焦点为

(Ⅰ)设直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求点M的轨迹的方程;
(Ⅱ)设为坐标原点,取曲线上不同于的点,以为直径作圆与相交另外一点,求该圆的面积最小时点的坐标.
(Ⅰ)(Ⅱ).

试题分析:(Ⅰ) 利用抛物线的定义“到定点的距离等于到定直线的距离”来求;(Ⅱ)直线与抛物线相交,联立消元,设点代入化简,利用基本不等式求最值.
试题解析:(I)在线段的垂直平分线上,∴| MP | =" |" M |
故动点M到定直线的距离等于它到定点的距离
因此动点M的轨迹是以为准线,为焦点的抛物线,
所以点M的轨迹的方程为  
(II)因为以OS为直径的圆与相交于点R,
所以,即
,则

所以,即
,∴
,当且仅当,即时等号成立
时,,圆的直径
这时点S的坐标为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知A(-5,0),B(5,0),动点P满足||,|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足||·||=,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆的左、右焦点,椭圆的离心率
(I)求椭圆的方程;(II)已知直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以线段为直径的圆恒过定点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.
(1)求轨迹的方程;
(2)证明:
(3)若点到直线的距离等于,且的面积为20,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知定点A(-2,0)、B(2,0),异于A、B两点的动点P满足,其中k1、k2分别表示直线AP、BP的斜率.

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若N是直线x=2上异于点B的任意一点,直线AN与(I)中轨迹E交予点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),点C(1,0),求证:|CM|·|CN| 为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,曲线上任意一点分别与点连线的斜率的乘积为
(Ⅰ)求曲线的方程;
(Ⅱ)设直线轴、轴分别交于两点,若曲线与直线没有公共点,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等边中,若以为焦点的椭圆经过点,则该椭圆的离心率为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是抛物线的焦点,是该抛物线上的两点,且,则线段的中点到轴的距离为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.

查看答案和解析>>

同步练习册答案