精英家教网 > 高中数学 > 题目详情

【题目】如图,是抛物线的焦点,过点且与坐标轴不垂直的直线交抛物线于两点,交抛物线的准线于点,其中.过点轴的垂线交抛物线于点,直线交抛物线于点.

1)求的值;

2)求四边形的面积的最小值.

【答案】1;(2.

【解析】

1)设直线的方程为,将该直线方程与抛物线的方程联立,消去,得到关于的二次方程,利用韦达定理结合可求出正数的值;

2)由直线与坐标轴不垂直,所以设方程为,并设点,将直线的方程与抛物线的方程联立,列出韦达定理,并求出,求出点的坐标,可得出点的坐标,并可得出直线的方程,将该直线方程与抛物线的方程联立,利用韦达定理得出点的坐标,并分别计算出点到直线的距离,利用三角形的面积公式可得出关于的表达式,设,构造函数,利用导数求出函数的最小值,即可得出的最小值.

1)设方程为,与联立,消去整理得

所以,得(舍去)或

2)由(1)知抛物线方程为,准线方程为.

因为直线与坐标轴不垂直,所以设方程为

所以

,则,所以

直线的方程为,由

所以,代入,得,所以.

到直线的距离为到直线的距离为

所以四边形的面积

,则,令,则.

时,,函数单调递减,

时,,函数单调递增.

所以,当时,有最小值

因此,四边形的面积的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,讨论函数的单调性.

2)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为,若曲线与曲线关于直线对称.

1)求曲线的直角坐标方程;

2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点是椭圆上一点,的等差中项.

)求椭圆的标准方程;

)若为椭圆的右顶点,直线轴交于点,过点的另一直线与椭圆交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某国营企业集团公司现有员工1000名,平均每人每年创造利润10万元.为了激化内部活力,增强企业竞争力,集团公司董事会决定优化产业结构,调整出)名员工从事第三产业;调整后,他们平均每人每年创造利润万元,剩下的员工平均每人每年创造的利润可以提高.

(Ⅰ)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?

(Ⅱ)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则实数的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线焦点且倾斜角的直线与抛物线交于点的面积为

(I)求抛物线的方程;

(II)设是直线上的一个动点,过作抛物线的切线,切点分别为直线与直线轴的交点分别为是以为圆心为半径的圆上任意两点,求最大时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,A1B1A1C1DB1C1的中点,A1AA1B12.

1)求证:AB1∥平面A1CD

2)若异面直线AB1BC所成角为60°,求四棱锥A1CDB1B的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络购物平台每年1111日举行“双十一”购物节,当天有多项优惠活动,深受广大消费者喜爱

1)已知该网络购物平台近5年“双十”购物节当天成交额如下表:

年份

2015

2016

2017

2018

2019

成交额(百亿元)

9

12

17

21

27

求成交额(百亿元)与时间变量(记2015年为2016年为,……依次类推)的线性回归方程,并预测2020年该平台“双十一”购物节当天的成交额(百亿元);

2)在2020年“双十一”购物节前,某同学的爸爸、妈妈计划在该网络购物平台.上分别参加两店各一个订单的“秒杀”抢购,若该同学的爸爸、妈妈在、两店订单“秒杀”成功的概率分别为,记该同学的爸爸和妈妈抢购到的订单总数量为

i)求的分布列及

ii)已知每个订单由件商品构成,记该同学的爸爸和妈妈抢购到的商品总数量为,假设,求取最大值时正整数的值.

附:回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,讨论函数的单调性;

(2)时,若不等式时恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案