精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,讨论函数的单调性.

2)若函数有两个零点,求的取值范围.

【答案】1)答案见详解;(2

【解析】

1)计算,讨论以及,然后根据的符号得出原函数的单调性.

2)根据(1)的结果,利用函数的极值的符号,可得结果.

1)函数的定义域为

所以

时,则

所以函数单调递增

时,

,则

,则

所以函数单调递增,在单调递减

,则

,则

所以函数单调递增,在单调递减

2)由(1)可知

时,

时,;若时,

所以函数单调递减,在单调递增

,由函数有两个零点

所以

时,函数单调递增,不符合题意

时,

函数单调递增,在单调递减

函数的极大值为

,由,所以

所以单调递增,

所以

故函数有1个零点,不符合题意

时,

函数单调递增,在单调递减

函数的极大值为

所以函数有1个零点,不符合题意

综上所述:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着生活水平的提高和人们对健康生活的重视,越来越多的人加入到健身运动中.国家统计局数据显示,2019年有4亿国人经常参加体育锻炼.某健身房从参与健身的会员中随机抽取100人,对其每周参与健身的天数和2019年在该健身房所有消费金额(单位:元)进行统计,得到以下统计表及统计图:

平均每周健身天数

不大于2

34

不少于5

人数(男)

20

35

9

人数(女)

10

20

6

若某人平均每周进行健身天数不少于5,则称其为“健身达人”.该健身房规定消费金额不多于1600元的为普通会员,超过1600元但不超过3200元的为银牌会员,超过3200元的为金牌会员.

1)已知金牌会员都是健身达人,现从健身达人中随机抽取2人,求他们均是金牌会员的概率;

2)能否在犯错误的概率不超过的前提下认为性别和是否为“健身达人”有关系?

3)该健身机构在2019年年底针对这100位消费者举办一次消费返利活动,现有以下两种方案:

方案一:按分层抽样从普通会员、银牌会员和金牌会员中共抽取25位“幸运之星”,分别给予188元,288元,888元的幸运奖励;

方案二:每位会员均可参加摸奖游戏,游戏规则如下:摸奖箱中装有5张形状大小完全一样的卡片,其中3张印跑步机图案、2张印动感单车图案,有放回地摸三次卡片,每次只能摸一张,若摸到动感单车的总数为2,则获得100元奖励,若摸到动感单车的总数为3,则获得200元奖励,其他情况不给予奖励.规定每个普通会员只能参加1次摸奖游戏,每个银牌会员可参加2次摸奖游戏,每个金牌会员可参加3次摸奖游戏(每次摸奖结果相互独立).

请你比较该健身房采用哪一种方案时,在此次消费返利活动中的支出较少,并说明理由.

附:,其中为样本容量.

0.50

0.25

0.10

0.05

0.010

0.005

0.455

1.323

2.706

3.841

6.636

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在多边形中,四边形为等腰梯形,,四边形为直角梯形,.以为折痕把等腰梯形折起,使得平面平面,如图2所示.

1)证明:平面

2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】企业为了监控某种零件的一条流水生产线的产品质量,检验员从该生产线上随机抽取100个零件,测量其尺寸(单位:)并经过统计分析,得到这100个零件的平均尺寸为10,标准差为0.5.企业规定:若,该零件为一等品,企业获利20元;若,该零件为二等品,企业获利10元;否则,该零件为不合格品,企业损失40.

1)在某一时刻内,依次下线10个零件,如果其中出现了不合格品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查若这10个零件的尺寸分别为9.610.59.810.110.79.410.99.51010.9,则从这一天抽检的结果看,是否需要对当天的生产过程进行检查?

2)将样本的估计近似地看作总体的估计通过检验发现,该零件的尺寸服从正态分布.其中近似为样本平均数,近似为样本方差.

i)从下线的零件中随机抽取20件,设其中为合格品的个数为,求的数学期望(结果保留整数)

ii)试估计生产10000个零件所获得的利润.

附:若随机变量服从正态分布,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点, 到抛物线的准线的距离为.

(I)求椭圆的方程和抛物线的方程;

(II)设上两点 关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点.若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对任意的,均有,则称函数具有性质

1)判断下面两个函数是否具有性质,并说明理由.①;②

2)若函数具有性质,且,求证:对任意

3)在(2)的条件下,是否对任意均有.若成立给出证明,若不成立给出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校开展学生社会法治服务项目,共设置了文明交通,社区服务,环保宣传和中国传统文化宣讲四个项目,现有该校的甲、乙、丙、丁4名学生,每名学生必须且只能选择1项.

1)求恰有2个项目没有被这4名学生选择的概率;

2)求环保宣传被这4名学生选择的人数的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,为正三角形,,点在线段的中点,点为线段的中点.

1)在线段上是否存在点,使得平面?若存在,指出点的位置;若不存在,请说明理由.

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是抛物线的焦点,过点且与坐标轴不垂直的直线交抛物线于两点,交抛物线的准线于点,其中.过点轴的垂线交抛物线于点,直线交抛物线于点.

1)求的值;

2)求四边形的面积的最小值.

查看答案和解析>>

同步练习册答案