| x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
分析 (1)利用平均数公式计算即得.
(2)把所给的7对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.
(3)作出利用最小二乘法来求线性回归方程的系数的量,求出横标和纵标的平均数,求出系数,再求出a的值,即可求出回归方程.
解答 解:(1)$\overline{x}$=$\frac{1}{7}$(3+4+5+6+7+8+9)=6(件),
$\overline{y}$=$\frac{1}{7}$(66+69+73+81+89+90+91)=$\frac{559}{7}$≈79.86(元).
(2)散点图如下:![]()
(3)由散点图知,y与x有线性相关关系.设回归直线方程为y=bx+a.
$\widehat{b}$=$\frac{3487-7×7×\frac{559}{7}}{280-7×36}$=4.75,$\widehat{a}$=$\frac{559}{7}$-6×4.75≈51.36.
故回归直线方程为y=4.75x+51.36.
点评 本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法做出线性回归方程的系数,本题是一个近几年可能出现在高考卷中的题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
人数 年级 区域 | 7 | 8 | 9 | 10 | 11 | 12 |
| 城区 | 30000 | 24000 | 20000 | 16000 | 12500 | 10000 |
| 郊区 | 5000 | 4400 | 4000 | 2300 | 2200 | 1800 |
人数 年级 区域 | 7 | 8 | 9 | 10 | 11 | 12 |
| 城区 | 75 | 72 | 76 | 72 | 75 | 74 |
| 郊区 | 10 | 9 | 15 | 8 | 9 | 11 |
| P(K2≥k0) | 0.5 | 0.4 | 0.25 | 0.15 | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| y | 5 | 8 | 8 | 10 | 14 | 15 | 17 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com