精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{{x}^{3}}{3}$+$\frac{a{x}^{2}}{2}$+2bx+c在区间(0,1)内取极大值,在区间(1,2)内取极小值,则z=(a+3)2+b2的取值范围为($\frac{4}{5}$,9).

分析 由题意可得x1,x2是导函数f′(x)=x2+ax+b的两根,由于导函数f′(x)=x2+ax+b的图象开口朝上且x1∈(0,1),x2∈(1,2)即$\left\{\begin{array}{l}{f′(0)=b>0}\\{f′(1)=1+a+b<0}\\{f′(2)=4+2a+b>0}\end{array}\right.$,画出满足以上条件的实数对(a,b)所构成的区域,z=(a+3)2+b2的表示点(a,b)到点(-3,0)的距离平方,即可求解

解答 解:设f(x)的极大值点是x1,极小值点是x2
∵函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+bx+c在x=x1处取得极大值,在x=x2处取得极小值,
∴x1,x2是导函数f′(x)=x2+ax+b的两根,
由于导函数f′(x)=x2+ax+b的图象开口朝上且x1∈(0,1),x2∈(1,2),
∴$\left\{\begin{array}{l}{f′(0)=b>0}\\{f′(1)=1+a+b<0}\\{f′(2)=4+2a+b>0}\end{array}\right.$,
则满足以上条件的实数对(a,b)所构成的区域如图所示:
由$\left\{\begin{array}{l}{1+a+b=0}\\{4+2a+b=0}\end{array}\right.$,得A(-3,2),
z=(a+3)2+b2的表示点(a,b)到点(-3,0)的距离平方,
又因为PA2=(-3--3)2+(2-0)2=4,PB2=9,
P到直线4+2a+b=0的距离等于$\frac{2}{\sqrt{5}}$,
则z=(a+3)2+b2的取值范围为($\frac{4}{5},9$),
故答案为:($\frac{4}{5}$,9).

点评 本题考查了函数的极值、根的分布及规划问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)…[90,100]后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ) 求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ) 设学生甲、乙的成绩属于区间[40,50),现从成绩属于该区间的学生中任选两人,求甲、乙中至少有一人被选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=lnx-0.5x+1,则不等式f(2x-3)<0.5的解集为(  )
A.{x|-1<x<1.5}B.{x|0.5<x<2}C.{x|x<2}D.{x|1.5<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某产品的广告费用x(万元)与销售额y(万元)的统计数据如表:
广告费用x(万元)23456
销售额y(万元)2941505971
根据上表可得回归方程$\hat y=\hat bx+\hat a$中$\hat b$的为10.2,据此模型预测广告费用为10万元时,销售额为(  )万元.
A.101.2B.108.8C.111.2D.118.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某服装店经营某种服装,在某周内获利润y(元)与该周每天销售这种服装件数x之间数据关系见表;
x3456789
y66697381899091
已知$\sum_{i=1}^7{{x_i}^2}$=280,$\sum_{i=1}^7{{y_i}^2}=45309$,$\sum_{i=1}^7{{x_i}{y_i}}=3487$线性回归方程,
(1)求$\overline{x}$,$\overline{y}$;    
(2)画出散点图;
(3)求纯利润y与每天销售件数x之间的回归直线方程.
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{{y}_{i}}$=a+bx,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.运行如下程序框图,分别输入t=45,t=-$\frac{172}{3}$,则输出s的和为(  )
A.-2017B.2017C.-2016D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c,若f(x)有两个极值点α、β,且0<α<1<β<2,则$\frac{a^2}{4}+{b^2}$的取值范围是(  )
A.$(\frac{1}{4},\frac{13}{4})$B.$(\frac{1}{4},1)$C.$(1,\frac{9}{4})$D.$(\frac{9}{4},\frac{13}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知:x∈(0+∞),求证:$ln(\frac{1}{x}+1)>\frac{1}{x+1}$;
(2)已知:n∈N且n≥2,求证:$lnn>\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\left\{\begin{array}{l}-x,\;\;\;\;\;\;x≤1\\ lnx+2,x>1.\end{array}\right.$则不等式f(x)>3的解集是{x|x<-3或x>e}.

查看答案和解析>>

同步练习册答案