精英家教网 > 高中数学 > 题目详情
13.设函数f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x,x∈R.
(Ⅰ)求函数f(x)的对称中心和单调减区间;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{3}$个长度单位后得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的最小值.

分析 (Ⅰ)利用三角函数恒等变换的应用化简可求f(x)=cos(2x+$\frac{π}{3}$)+1,由2kπ≤2x+$\frac{π}{3}$≤2kπ+π,k∈Z,可求单调递减区间,利用三角函数的对称性可求对称中心.
(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律可求g(x)=cos(2x-$\frac{π}{3}$)+1,由已知可求2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],利用余弦函数的图象和性质可求最值.

解答 (本题满分为13分)
解:(Ⅰ)∵f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x=-$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+1+cos2x=$\frac{1}{2}cos2x$-$\frac{\sqrt{3}}{2}$sin2x+1=cos(2x+$\frac{π}{3}$)+1,
∴函数的最小正周期为π,
∵由:2kπ≤2x+$\frac{π}{3}$≤2kπ+π,k∈Z,可得:kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
∴函数的单调递减区间为:[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
∴f(x)=-sin(2x-$\frac{π}{6}$)+1,令2x-$\frac{π}{6}$=kπ,可得:x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,
∴f(x)的对称中心是:($\frac{kπ}{2}$+$\frac{π}{12}$,1),k∈Z.
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{3}$个长度单位后得到函数g(x)的图象,
可得:g(x)=f(x-$\frac{π}{3}$)=cos[2(x-$\frac{π}{3}$)+$\frac{π}{3}$]+1=cos(2x-$\frac{π}{3}$)+1,
由:x∈[0,$\frac{π}{2}$],可得:2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
可得:cos(2x-$\frac{π}{3}$)+1∈[$\frac{1}{2}$,2],
可得:f(x)的最小值是$\frac{1}{2}$,f(x)的最大值是2.

点评 本题主要考查了三角函数恒等变换的应用,函数y=Asin(ωx+φ)的图象变换规律,正弦函数,余弦函数的图象和性质的综合应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设曲线$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$与x轴交点为M、N,点P在曲线上,则PM与PN所在直线的斜率之积为(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从A地到B地有3种乘车方式,从B地到C地有2种乘车方式,从A地经B地去C地,不同的乘车方式有6种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x∈R|f(x)=log2(x-2)},B={y∈R|y=log2(x-2)},则A∩B=(  )
A.(0,2)B.(0,2]C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.阅读下面的程序框图,运行相应的程序,则输出的K和S的值分别为(  )
A.9,$\frac{4}{9}$B.11,$\frac{5}{11}$C.11,$\frac{10}{11}$D.13,$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+ax2,g(x)=$\frac{b}{x}$+x,且直线y=-$\frac{1}{2}$是曲线y=f(x)的一条切线.
(Ⅰ)求实数a的值;
(Ⅱ)对任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求实数b的取值范围;
(Ⅲ)已知方程f(x)=cx有两个根x1,x2(x1<x2),若b=1时有g(x1+x2)+m+2c=0,求证:m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sinθ>0且cosθ<0,则θ是第二象限角,若sinθ•tanθ<0,则θ是第二、三象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C的对边分别为a,b,c且A:B:C=2:1:3,则a:b:c=(  )
A.2:1:3B.3:2:1C.$1:\sqrt{3}:2$D.$\sqrt{3}:1:2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=2sinB,且a+b=$\sqrt{3}$c,则角C的大小为60°.

查看答案和解析>>

同步练习册答案