精英家教网 > 高中数学 > 题目详情
8.阅读下面的程序框图,运行相应的程序,则输出的K和S的值分别为(  )
A.9,$\frac{4}{9}$B.11,$\frac{5}{11}$C.11,$\frac{10}{11}$D.13,$\frac{12}{13}$

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S,K的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
S=0,K=1
不满足条件K>10,执行循环体,S=$\frac{1}{1×3}$,K=3
不满足条件K>10,执行循环体,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$,K=5
不满足条件K>10,执行循环体,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$,K=7
不满足条件K>10,执行循环体,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$,K=9
不满足条件K>10,执行循环体,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$+$\frac{1}{9×11}$,K=11
满足条件K>10,退出循环,输出K=11,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$+$\frac{1}{9×11}$=$\frac{1}{2}×$(1-$\frac{1}{3}$$+\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{9}$-$\frac{1}{11}$)=$\frac{1}{2}×$(1-$\frac{1}{11}$)=$\frac{5}{11}$.
故选:B.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,并且满足2Sn=an2+n,an>0.猜想{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的顶点A(1,5),AB边上的中线CM所在直线方程为x-2y+5=0,AC边上的高BH所在直线方程为2x-y+5=0,求:
(Ⅰ)顶点C的坐标;
(Ⅱ)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某年高考中,某省10万考生在满分为150分的数学考试中,成绩分布近似服从正态分布N(110,100),则分数位于区间(130,150]分的考生人数近似为(  )
(已知若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974.
A.1140B.1075C.2280D.2150

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某程序框图如图所示,若输入的n=10,则输出结果为(  )
A.$\frac{1}{10}$B.$\frac{8}{9}$C.$\frac{9}{10}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x,x∈R.
(Ⅰ)求函数f(x)的对称中心和单调减区间;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{3}$个长度单位后得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知两个圆的方程分别为x2+y2=4和x2+y2+2y-6=0,则它们的公共弦长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α的终边上的一点坐标为$({1,\sqrt{3}})$,则sinα为(  )
A.$\frac{{\sqrt{3}}}{2}$B.0C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.等差数列{an}中,若a1+a2=4,a9+a10=36,Sn是数列{an}的前n项和,则S10=100.

查看答案和解析>>

同步练习册答案