精英家教网 > 高中数学 > 题目详情
16.在△ABC中,若sinA-2sinBcosC=0,则△ABC必定是(  )
A.钝角三角形B.等腰三角形C.直角三角形D.锐角三角形

分析 由已知利用三角形内角和定理,两角和与差的正弦函数公式可得sin(B-C)=0,利用正弦函数的图象和性质可求B=C,即可得解△ABC必定是等腰三角形.

解答 解:∵由已知可得:sinA=sin(B+C)=sinBcosC+cosBsinC=2sinBcosC,
∴sin(B-C)=0,
∵B-C∈(-π,π),
∴B=C,
∴△ABC必定是等腰三角形.
故选:B.

点评 本题主要考查了三角形内角和定理,两角和与差的正弦函数,正弦函数的图象和性质的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知变量x,y满足约束条件$\left\{\begin{array}{l}2x+y≥3\\ y≤x\\ 2x-y≤8\end{array}\right.$,则目标函数z=3x-y的最大值为(  )
A.2B.11C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个口袋里装有大小相同的6个小球,其中红色、黄色、绿色的球各2个,现从中任意取出3个小球,其中恰有2个小球同颜色的概率是$\frac{3}{5}$.若取到红球得1分,取到黄球得2分,取到绿球得3分,记变量ξ为取出的三个小球得分之和,则ξ的期望为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间[0,9]上随机取一实数x,则该实数x满足不等式1≤log2x≤2的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{4}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知圆C的方程为x2+y2=1,P是双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1上的一点,过P作圆的两条切线,切点为A,B,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为(  )
A.[0,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.[1,$\frac{3}{2}$]D.[$\frac{3}{2}$,$\frac{9}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在四棱锥P-ABCD中,E为棱AD的中点,PE⊥平面ABCD,AD∥BC,∠ADC=90°,ED=BC=2,EB=3,F为棱PC的中点.
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)若二面角F-BE-C为60°,求直线PB与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}x=2+\sqrt{7}cosα\\ y=\sqrt{7}sinα\end{array}\right.$(α为参数).以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=8cosθ,直线l的极坐标方程为$θ=\frac{π}{3}(ρ∈R)$.
(Ⅰ)求曲线C1的极坐标方程与直线l的直角坐标方程;
(Ⅱ)若直线l与C1,C2在第一象限分别交于A,B两点,P为C2上的动点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,∠ACB=60°,BC>1,AC=AB+$\frac{1}{2}$,当△ABC的周长最短时,BC的长是$\frac{\sqrt{2}}{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=lnxB.y=|x|C.y=-x2D.y=($\frac{1}{2}$)x

查看答案和解析>>

同步练习册答案