| A. | 2 | B. | 11 | C. | 16 | D. | 18 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}2x+y≥3\\ y≤x\\ 2x-y≤8\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{y=x}\\{2x-y=8}\end{array}\right.$,解得A(8,8),
化目标函数z=3x-y为y=3x-z,由图可知,当直线y=3x-z过点A时,
直线在y轴上的截距最小,z有最大值为3×8-8=16.
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在区间(-$\frac{π}{6}$,$\frac{5π}{6}$)上单调递增 | B. | 最小正周期是π | ||
| C. | 图象关于点($\frac{π}{4}$,0)成中心对称 | D. | 图象关于直线x=$\frac{π}{6}$成轴对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,+∞) | B. | [3,+∞) | C. | (1,3) | D. | (1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com