分析 (1)利用诱导公式进行化简;
(2)利用(1)中的函数关系式得到cosα=-$\frac{3}{5}$,然后由同角三角函数来求tanα的值.
解答 解:(1)f(α)=$\frac{tan(π-α)•cos(2π-α)•sin(\frac{π}{2}+α)}{cos(π+α)}$
=$\frac{-tanα•cosα•cosα}{-cosα}$
=sinα;
(2)由sin($\frac{π}{2}$-α)=-$\frac{3}{5}$得cosα=-$\frac{3}{5}$,
又α是第二象限角
所以sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,
则tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$.
点评 本题主要考察了同角三角函数关系式和诱导公式的应用,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $ω=\frac{1}{2},φ=\frac{π}{4}$ | B. | $ω=2,φ=\frac{π}{4}$ | C. | $ω=\frac{1}{2},φ=\frac{π}{2}$ | D. | $ω=2,φ=\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲 | 乙 | 原料限额 | |
| A(吨) | 3 | 2 | 12 |
| B(吨) | 1 | 2 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{9}{4}$ | C. | $\frac{{2\sqrt{3}+5}}{4}$ | D. | $\frac{{2\sqrt{3}+6}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 300 | B. | 250 | C. | 200 | D. | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $±\frac{4}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com