| A. | $\frac{1}{4}$ | B. | $\frac{9}{4}$ | C. | $\frac{{2\sqrt{3}+5}}{4}$ | D. | $\frac{{2\sqrt{3}+6}}{4}$ |
分析 x∈$[\frac{π}{3},\frac{5π}{6}]$,可得sinx∈$[\frac{1}{2},1]$.f(x)=1-sin2x+sinx=-$(sinx-\frac{1}{2})^{2}$+$\frac{5}{4}$,利用二次函数与三角函数的单调性即可得出.
解答 解:∵x∈$[\frac{π}{3},\frac{5π}{6}]$,∴sinx∈$[\frac{1}{2},1]$.
∴f(x)=1-sin2x+sinx=-$(sinx-\frac{1}{2})^{2}$+$\frac{5}{4}$∈$[1,\frac{5}{4}]$.
∴则f(x)的最大值与最小值的和=$\frac{9}{4}$.
故选:B.
点评 本题考查了二次函数与三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?n∈N,n2>2n | B. | ?n∈N,n2>2n | C. | ?n∈N,n2≤2n | D. | ?n∈N,n2≤2n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=2sin(4x+\frac{2π}{3})$ | B. | $y=4sin(2x+\frac{π}{3})$ | C. | $y=2\sqrt{3}sin(4x+\frac{π}{6})$ | D. | $y=-2sin(4x+\frac{2π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com