【题目】已知四棱锥,其中面为的中点.
(1)求证:面;
(2)求证:面面;
(3)求四棱锥的体积.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
试题分析:(1)取中点,连接,根据三角形的中位线,得到四边形为平行四边形,进而得到,再结合线面平行的判定定理,即可证明面;(2)根据为等边三角形,为的中点,面,得到,根据线面垂直的判定定理得到面,则面,再由面面垂直的判定定理,可得面面;(3)连接,可得四棱锥分为两个三棱锥和,利用体积公式,即可求解三棱锥的体积.
试题解析:(1)证明:取中点,连接 分别是 的中点, ,且与 平行且相等,为平行四边形,,又面面面.
(2)证明:为等边三角形,,又面面垂直于面的两条相交直线面面面面面.
(3)连接,该四棱锥分为两个三棱锥和.
.
科目:高中数学 来源: 题型:
【题目】为自然对数的底数.
(Ⅰ)求函数在区间上的最值;
(Ⅱ)当时,设函数(其中为常数)的3个极值点为,且,将这5个数按照从小到大的顺序排列,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解今年某校高三毕业班想参军的学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为24.
(Ⅰ)求该校高三毕业班想参军的学生人数;
(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省高三毕业班想参军的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程.
(1)求该方程表示一条直线的条件;
(2)当为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(3)已知方程表示的直线在轴上的截距为-3,求实数的值;
(4)若方程表示的直线的倾斜角是45°,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162 (版心是指图中的长方形阴影部分,为长度单位分米),上、下两边各空2 ,左、右两边各空1 .
(Ⅰ)若设版心的高为 ,求海报四周空白面积关于的函数的解析式;
(Ⅱ)要使海报四周空白面积最小,版心的高和宽该如何设计?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四面体的顶点、、分别在两两垂直的三条射线, , 上,则在下列命题中,错误的是( )
A. 是正三棱锥
B. 直线与平面相交
C. 直线与平面所成的角的正弦值为
D. 异面直线和所成角是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com