精英家教网 > 高中数学 > 题目详情

【题目】连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162 版心是指图中的长方形阴影部分为长度单位分米),上、下两边各空2 ,左、右两边各空1 .

)若设版心的高为 ,求海报四周空白面积关于的函数的解析式;

)要使海报四周空白面积最小,版心的高和宽该如何设计?

【答案】(1)(2)版心的高应该为18 、宽为9

【解析】

试题分析:(1)由已知版心的高为xdm,则版心的宽为dm,求出海报四周空白面积.(2)利用基本不等式求解即可

试题解析:(1)由已知版心的高为 ,则版心的宽为 ……………1分

故海报四周空白面积为 ……………4分

……………6分

(2)由基本不等式得: ……9分

当且仅当时取等号 11分

要使海报四周空白面积最小,版心的高应该为18 、宽为9 ……………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的最大值;

2)函数轴交于两点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A. 年收入平均数大大增大,中位数一定变大,方差可能不变

B. 年收入平均数大大增大,中位数可能不变,方差变大

C. 年收入平均数大大增大,中位数可能不变,方差也不变

D. 年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,其中的中点.

(1)求证:

(2)求证:面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,底面是边长为1的正方形,侧棱PD=1,PA=PC=.

(1)求证:PD⊥平面ABCD;

(2)求证:平面PAC⊥平面PBD;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象上有一点列,点轴上的射影是,且 (), .

(1)求证: 是等比数列,并求出数列的通项公式;

(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围.

(3)设四边形的面积是,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路记两条相互垂直的公路为,山区边界曲线为计划修建的公路为,如图所示,的两个端点,测得点的距离分别为5千米40千米,点的距离分别为20千米和25千米,以所在直线分别为轴,建立平面直角坐标系假设曲线符合函数其中为常数模型

1的值;

2设公路与曲线相切于点,的横坐标为

请写出公路长度的函数解析式,并写出其定义域;

为何值时,公路的长度最短?求出最短长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是直线上的一动点,过点作圆的切线,切点为

(1)当切线的长度为时,求点的坐标;

(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.

(3)求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有学生 人,其中一年级 人,二、三年级各 人,现要用抽样方法抽取 人形成样本,将学生按一、二、三年级依次统一编号为 ,如果抽得号码有下列四种情况:

其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

同步练习册答案