精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:平面PAC⊥平面BDE;
(3)若OP=10,AB=4,求BE与底面ABCD所成角的正切值.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离,空间角
分析:(1)先根据中位线定理得到OE∥AP,进而再由线面平行的判定定理可得到PA∥平面BDE.
(2)先根据线面垂直的性质定理得到PO⊥BD,结合AC⊥BD根据线面垂直的判定定理得到BD⊥平面PAC,从而根据面面垂直的判定定理得到平面PAC⊥平面BDE,得证;
(3)取OC的中点F,连接EF和BF,可得∠EBF为BE与底面ABCD所成角,即可求出BE与底面ABCD所成角的正切值.
解答: 证明:(1)连接OE,
在△CAP中,CO=OA,CE=EP
∴PA∥EO,
又∵PA?平面BDE,EO?平面BDE,
∴PA∥平面BDE;
(2)∵PO⊥底面ABCD,
PO⊥BD,
又∵AC⊥BD,且AC∩PO=O,
∴BD⊥平面PAC.                                      
∵BD?平面BDE,
∴平面PAC⊥平面BDE;
(3)取OC的中点F,连接EF和BF,则OP∥EF,EF=5
又∵OP⊥底面ABCD,∴EF⊥底面ABCD,
∴∠EBF为BE与底面ABCD所成角.
∵OF=
1
2
OB=
2
,BF=
OB2+OF2
=
10

∴tan∠EBF=
EF
BF
=
10
2
点评:本题考查线面平行的判定与面面垂直的判定.证明线面平行常有两种思路:一是线线平行⇒线面平行;二是面面平行⇒线面平行.证明面面垂直的常用方法是:线面垂直⇒面面垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:对任意x,都有f(1+x)=f(1-x),且f(x)在(-∞,1]上是单调递增,若x1<x2,且x1+x2=3,则f(x1)与f(x2)的大小关系是(  )
A、f(x1)<f(x2
B、f(x1)=f(x2
C、f(x1)>f(x2
D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|sinx|的最小正周期为(  )
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<α<π,tanα=-2,化简:
2cos(
π
2
+α)-cos(π-α)
sin(
π
2
-α)-3sin(π+α)
,并求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求二次函数f(x)=x2-4x-1在区间[t,t+2]上的最小值g(t),其中t∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次试验中,测得(x,y)的五组值为(1,1.4),(2,2),(3,2.6),(4,3.2),(5,3.8),求y与x之间的回归方程.附:
b
=
n
i-1
xiyi-n
.
xy
n
i-1
xi2-n
.
x
2
  
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[
π
2
3
2
π]
(Ⅰ)求|
a
+
b
|的取值范围;
(Ⅱ)求函数f(x)=
a
b
-|
a
+
b
|的最小值,并求此时x的值;
(Ⅲ)若|k
a
+
b
|=
3
|
a
-k
b
|,其中k>0,求
a
b
的最小值,并求此时
a
b
的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=3+2n
(1)求an
(2)设数列{bn}满足bn=lgan,数列{bn}从第2项起,成等差数列还是等比数列?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

m为何值时,方程x2+y2-4x+2my+2m2-2m+1=0表示圆,并求半径最大时圆的方程.

查看答案和解析>>

同步练习册答案