【题目】已知椭圆
的中心在坐标原点,离心率等于
,该椭圆的一个长轴端点恰好是抛物线
的焦点.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
的两个交点记为
、
,其中点
在第一象限,点
、
是椭圆上位于直线
两侧的动点.当
、
运动时,满足
,试问直线
的斜率是否为定值?若是,求出该定值;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科。某省采用
模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某学校从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如下表是根据调查结果得到的
列联表.请求出
和
,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“历史” | 总计 | |
男生 |
| 10 | |
女生 | 25 |
| |
总计 |
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“历史”的人数为
,求
的分布列及数学期望.
参考公式:![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,
分别为内角
所对的边,且满足
.
(Ⅰ)求
的大小;
(Ⅱ)现给出三个条件:①
; ②
;③
.
试从中选出两个可以确定
的条件,写出你的选择并以此为依据求
的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线L:
,曲线C的参数方程为
(
为参数)
求直线L和曲线C的普通方程;
在曲线C上求一点Q,使得Q到直线L的距离最小,并求出这个最小值![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若
,则
”的逆否命题为:“若
,则
”
B.“
”是“
”的充分而不必要条件
C.若
且
为假命题,则
、
均为假命题
D.命题
“存在
,使得
”,则非
“任意
,均有
”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
经过
为坐标原点,线段
的中点在圆
上.
(1)求
的方程;
(2)直线
不过曲线
的右焦点
,与
交于
两点,且
与圆
相切,切点在第一象限,
的周长是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为点
,左、右顶点分别为
,长轴长为
,椭圆上任意一点
(不与
重合)与
连线的斜率乘积均为
.
![]()
(1)求椭圆
的标准方程;
(2)如图,过点
的直线
与椭圆
交于
两点,过点
的直线
与椭圆
交于
两点,且
,试问:四边形
可否为菱形?并请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
经过两点
,
,且圆心
在直线
:
上.
(1)求圆
的方程;
(2)设圆
与
轴相交于
、
两点,点
为圆
上不同于
、
的任意一点,直线
、
交
轴于
、
点.当点
变化时,以
为直径的圆
是否经过圆
内一定点?请证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com