精英家教网 > 高中数学 > 题目详情

【题目】椭圆经过为坐标原点,线段的中点在圆上.

(1)求的方程;

(2)直线不过曲线的右焦点,与交于两点,且与圆相切,切点在第一象限, 的周长是否为定值?并说明理由.

【答案】12

【解析】试题分析:1由题意,可得: ,从而得到的方程;

2依题意可设直线由直线与圆相切,且切点的第一象限,可得,将直线与椭圆方程联立可得利用韦达定理表示,同时表示,同理,从而易得周长为定值.

试题解析:

1)由题意得

由题意得, 的中点在圆上,

所以,得

所以椭圆方程为.

2)依题意可设直线

因为直线与圆相切,且切点的第一象限,

所以,且有

,将直线与椭圆方程联立

可得, ,且

因为,故

另一方面

化简得,同理,可得

由此可得的周长

的周长为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中, ,四边形为正方形,平面平面

(1)证明:在线段上存在一点,使得平面

(2)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车因绿色、环保、健康的出行方式,在国内得到迅速推广.最近,某机构在某地区随机采访了10名男士和10名女士,结果男士、女士中分别有7人、6人表示“经常骑共享单车出行”,其他人表示“较少或不选择骑共享单车出行”.

1从这些男士和女士中各抽取一人,求至少有一人“经常骑共享单车出行”的概率;

2从这些男士中抽取一人,女士中抽取两人,记这三人中“经常骑共享单车出行”的人数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的各条棱长都相等,且点分别是的中点.

1求证:

(2)在上是否存在点,使平面平面,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线与椭圆交于点轴上方),且.设点轴上的射影为,三角形的面积为2(如图1.

1)求椭圆的方程;

2)设平行于的直线与椭圆相交,其弦的中点为.

①求证:直线的斜率为定值;

②设直线与椭圆相交于两点轴上方),点为椭圆上异于一点,直线于点于点,如图2,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1, 在直角梯形中, 为线段的中点. 沿折起,使平面 平面,得到几何体,如图2所示.

1)求证: 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心为,半径为1的圆.

(1)求曲线 的直角坐标方程;

(2)设为曲线上的点, 为曲线上的点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)若函数上为减函数,求实数的取值范围;

(2)令,已知函数,若对任意,总存在 ,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与直线都经过点.直线平行,且与椭圆交于两点,直线轴分别交于两点.

(1)求椭圆的方程;

(2)证明: 为等腰三角形.

查看答案和解析>>

同步练习册答案