精英家教网 > 高中数学 > 题目详情
已知点是直线上任意一点,以
焦点的椭圆过点.记椭圆离心率关于的函数为,那么下列结论正确的是(  )                                                                                        
A.一一对应B.函数无最小值,有最大值
C.函数是增函数D.函数有最小值,无最大值
B

分析:由题意可得c=1,椭圆离心率e= ,由椭圆的定义可得PA+PB=2a,a= ,再由PA+PB 有最小值而没有最大值,从而得出结论.
解答:由题意可得c=1,椭圆离心率e==.故当a取最大值时e取最小,a取最小值时e取最大.
由椭圆的定义可得PA+PB=2a,a=
由于PA+PB 有最小值而没有最大值,即a有最小值而没有最大值,
故椭圆离心率e 有最大值而没有最小值,故B正确,且 D不正确.
当直线y=x+2和椭圆相交时,这两个交点到A、B两点的距离之和相等,
都等于2a,故这两个交点对应的离心率e相同,故A不正确.
由于当x0的取值趋于负无穷大时,PA+PB=2a趋于正无穷大;
而当当x0的取值趋于正无穷大时,PA+PB=2a也趋于正无穷大,故函数e(x0)不是增函数,故C不正确.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)第一题满分4分,第二题满分6分,第三题满分6分.
已知动圆过定点P(1,0),且与定直线相切。
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且倾斜角为的直线与曲线M相交于A,B两点,A,B在直线上的射影是。求梯形的面积;
(3)若点C是(2)中线段上的动点,当△ABC为直角三角形时,求点C的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,过点
倾斜角为的直线交椭圆于两点,
(1)求椭圆的离心率;
(2)若,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F是抛物线y2=x的焦点,AB是该抛物线上的两点,,则线
AB的中点到y轴的距离为
A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C:(常数),P是曲线C上的动点,M是曲线C的右
顶点,定点A的坐标为(2,0).
(1)若M与A重合,求曲线C的焦点坐标.
(2)若,求|PA|的最大值与最小值.
(3)若|PA|最小值为|MA|,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与抛物线交于点,以线段为直径的圆恰与抛物线
的准线相切,若圆的面积为,则直线的斜率为______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知棱长为2的正方体中,的中点,P是平面内的动点,且满足条件,则动点P在平面内形成的轨迹是    ▲  

查看答案和解析>>

同步练习册答案