精英家教网 > 高中数学 > 题目详情
8.已知各项均为正数的数列{an}的前n项和为Sn,且满足2Sn=an2+n-16.
(1)求a1,a2,a3的值,猜想数列{an}的通项公式并用数学归纳方法证明.
(2)令bn=$\frac{{a}_{n}-4}{{2}^{{a}_{n}-4}}$,求数列{bn}的前n项和Tn

分析 (1)分别令n=1,2,3,计算可得数列的前3项,猜想数列{an}的通项公式为an=n+4,n∈N*,用数学归纳方法证明,注意检验n=1,假设n=k,推得n=k+1也成立,注意运用数列的递推式;
(2)求得bn=$\frac{{a}_{n}-4}{{2}^{{a}_{n}-4}}$=n•($\frac{1}{2}$)n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)各项均为正数的数列{an}的前n项和为Sn,且满足2Sn=an2+n-16,
可得2a1=2S1=a12+1-16,解得a1=5;
2(a1+a2)=a22+2-16,解得a2=6;
2(a1+a2+a3)=a32+3-16,解得a3=7,
猜想数列{an}的通项公式为an=n+4,n∈N*,
用数学归纳方法证明如下:
当n=1时,a1=5显然成立;
假设n=k,有ak=k+4,
当n=k+1时,可得
ak+1=Sk+1-Sk=$\frac{1}{2}$(ak+12+k-15)-$\frac{1}{2}$[(k+4)2+k-16],
化简可得ak+12-2ak+1+1-(k+4)2=0,
解得ak+1=k+5,
故n=k+1,等式也成立,
综上可得an=n+4,n∈N*,
(2)bn=$\frac{{a}_{n}-4}{{2}^{{a}_{n}-4}}$=n•($\frac{1}{2}$)n
前n项和Tn=1•($\frac{1}{2}$)1+2•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n
$\frac{1}{2}$Tn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n+1
两式相减可得$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1
化简可得Tn=2-$\frac{n+2}{{2}^{n}}$.

点评 本题考查数列的通项公式的求法,注意运用猜想和数学归纳法之美,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ax(a>0,a≠1)在[1,2]上的最大值和最小值的和为6,则a=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=|x2+2x|,x∈R,若方程f(x)-a|x-1|=0恰有4个互异的小于1的实数根,则实数a的取值范围为(0,4-2$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x=2n-1,n∈Z},B={x|(x+2)(x-3)<0},则A∩B=(  )
A.{-1,0,1,2}B.{-1,1}C.{1}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.6名大学毕业省先分成三组,其中两组各1人,一组4人,再分配到3个不同的工作岗位实习,则符合条件的不同分法数为90.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={x|-1≤x≤1},N={x|$\frac{x}{x-1}$≤0},则M∩N=(  )
A.{x|0≤x≤1}B.{x|0≤x<1}C.{x|-1≤x≤0}D.{x|-1≤x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个箱子里装有7只好灯泡、3只坏灯泡,从中取两次,每次任取一只,每次取后不放回,已知第一次取到的是好灯泡,则第二次取到的还是好灯泡的概率是(  )
A.$\frac{2}{3}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖一次.抽奖方法是:从装有标号为1,2,3,4的4个红球和标号为1,2的2个白球的箱中,随机摸出2个球,若摸出的两球号码相同,可获一等奖;若两球颜色不同且号码相邻,可获二等奖,其余情况获三等奖.已知某顾客参与抽奖一次.
(Ⅰ)求该顾客获一等奖的概率;
(Ⅱ)求该顾客获三获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列说法正确的有:②④.
①如果一个平面内的两条直线分别平行于另一个平面,那么这两个平面平行;
②如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行;
③分别在两个平行平面内的两条直线互相平行;
④过平面外一点有且仅有一个平面与已知平面平行.

查看答案和解析>>

同步练习册答案