精英家教网 > 高中数学 > 题目详情

【题目】关于x的方程x3﹣ax+2=0有三个不同实数解,则实数a的取值范围是(
A.(2,+∞)
B.(3,+∞)
C.(0,3 )
D.(﹣∞,3)

【答案】B
【解析】解:令f(x)=x3﹣ax+2,则f′(x)=3x2﹣a,

若a≤0,则f′(x)≥0,∴f(x)为增函数,

∴f(x)最多只有1个零点,不符合题意;

若a>0,令f′(x)=0得x=±

∴当x<﹣ 或x> 时,f′(x)>0,

当﹣ <x< 时,f′(x)<0,

∴f(x)在(﹣∞,﹣ )上单调递增,在(﹣ )上单调递减,在( ,+∞)上单调递增,

∴当x=﹣ 时,f(x)取得极大值f(﹣ )= +2,

当x= 时,f(x)取得极小值f( )=﹣ +2,

∵f(x)有三个零点,

,解得a>3.

综上,a>3.

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知 ,sinB=cosAsinC,SABC=6,P为线段AB上的点,且 ,则xy的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种新型的洗衣液,去污速度特别快.已知每投放个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间 (分钟) 变化的函数关系式近似为其中.根据经验,当水中洗衣液的浓度不低于4(/升)时,它才能起到有效去污的作用.

1若投放个单位的洗衣液,3分钟时水中洗衣液的浓度为4 (/),的值

2)若投放4个单位的洗衣液,则有效去污时间可达几分钟?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),当点是函数图象上的点时,点是函数图象上的点.

(1)写出函数的解析式;

(2)把的图象向左平移个单位得到的图象,函数,是否存在实数,使函数的定义域为,值域为.如果存在,求出的值;如果不存在,说明理由;

(3)若当时,恒有,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.

(1)求正视图的面积;

(2)求四棱锥P-ABCD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求二面角A1﹣AB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上. (Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,某地一天从6时到14时的温度变化曲线近似满足函数yAsin(ωxφ)+b. (0 <φ < π)

(1)求这段时间的最大温差;

(2)写出这段曲线的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 函数.

(1)求在区间上的最大值和最小值

(2)若 的值

3)若函数在区间上是单调递增函数求正数的取值范围.

查看答案和解析>>

同步练习册答案