精英家教网 > 高中数学 > 题目详情
4.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b∈N*)的两个焦点F1,F2,点P是双曲线上一点,|OP|<5,|PF1|,|F1F2|,|PF2|成等比数列,则双曲线的离心率为(  )
A.2B.3C.$\frac{5}{3}$D.$\frac{\sqrt{5}}{2}$

分析 通过等比数列的性质和双曲线的定义,余弦定理推出:|OP|2=20+3b2.利用|OP|<5,b∈N,求出b的值,求出c,再由离心率公式计算即可得到.

解答 解:由题意,|PF1|、|F1F2|、|PF2|成等比数列,
可知,|F1F2|2=|PF1||PF2|,
即4c2=|PF1||PF2|,
由双曲线的定义可知|PF1|-|PF2|=4,即|PF1|2+|PF2|2-2|PF1||PF2|=16,
可得|PF1|2+|PF2|2-8c2=16…①
设∠POF1=θ,则∠POF2=π-θ,
由余弦定理可得:|PF2|2=c2+|OP|2-2|OF2||OP|cos(π-θ),
|PF1|2=c2+|OP|2-2|OF1||OP|cosθ,
|PF2|2+PF1|2=2c2+2|OP|2,…②,
由①②化简得:|OP|2=8+3c2=20+3b2
因为|OP|<5,b∈N,所以20+3b2<25.
所以b=1.
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$,
即有e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故选:D.

点评 本题考查双曲线的定义、方程和性质,余弦定理以及等比数列的应用,是一道综合问题,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,BC为圆O的直径,A为圆O上一点,过点A作圆O的切线交BC的延长线于点P,AH⊥PB于H.
求证:PA•AH=PC•HB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设全集U=R,集合A={x|(x-2)(x-4)<0},B={x||x|<3},则A∩B=(2,3),A∪B=(-3,4),∁UB=(-∞,3]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式$\frac{{|{x+1}|}}{{|{x-2}|}}$≥1的解集是[$\frac{1}{2}$,2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,俯视图是圆心角为$\frac{π}{2}$的扇形,则该几何体的侧面积为(  )
A.$\frac{1}{2}$B.1+$\frac{π}{4}$C.1+$\frac{\sqrt{2}π}{4}$D.1+$\frac{π}{4}$+$\frac{\sqrt{2}π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合M={x|y=$\sqrt{x-1}$},N={x|x2<4},则(∁RM)∩N等于(  )
A.(-1,2)B.(-2,1)C.(-2,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1关于一条渐近线的对称点P在另一条渐近线上,该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,已知a=2,b=3,那么$\frac{sinA}{sin(A+C)}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足S=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$.
(Ⅰ)求B;
(Ⅱ)若b=$\sqrt{3}$,设A=x,$y=(\sqrt{3}-1)a+2c$,求函数y=f(x)的解析式和最大值.

查看答案和解析>>

同步练习册答案