精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,分别求f(3),f(f(3)),f(f(-1)) 的值.

分析 直接利用函数的解析式求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,
f(3)=$\frac{2}{3}$,f(f(3))=f($\frac{2}{3}$)=$(\frac{2}{3})^{2}+1$=$\frac{13}{9}$,
f(f(-1))=f(2)=22+1=5,

点评 本题考查分段函数求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.幂函数的图象经过点A($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),则它在A点处的切线方程为2$\sqrt{2}$x-4y+$\sqrt{2}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=4x+$\frac{a}{x}$+b(a,b∈R)为奇函数.
(Ⅰ)若f(1)=5,求函数f(x)的解析式;
(Ⅱ)当a=-2时,对任意x∈[1,4]上,函数y=f(x)的图象在函数y=t的图象的下方,求实数t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.{an}为等差数列,Sn为其前n项和,a7=5,S7=21,则S10=40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题正确的是(  )
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.三角形的两条边平行于一个平面,则第三边也平行于这个平面
D.若两个平面都垂直于第三个平面,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知m,n为直线,α为平面,下列结论正确的是(  )
A.若m⊥n,n?α,则m⊥αB.若m∥α,m⊥n,则n⊥αC.若m∥α,n∥α,则m∥nD.若m⊥α,n⊥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x|x+a|-$\frac{1}{2}$lnx(a∈R).
(Ⅰ)若a=1,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-a|-$\frac{9}{x}$+a,x∈[1,6],a∈R.
(Ⅰ)若a=1,求函数f(x)的单调区间,并用单调性定义证明;
(Ⅱ)若函数f(x)在[1,a]上单调,且存在x0∈[1,a]使f(x0)>-2成立,求a的取值范围;
(Ⅲ)当a∈(1,6)时,求函数f(x)的最大值的表达式M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=41-x-2(x>1)的值域是(-2,-1).

查看答案和解析>>

同步练习册答案