精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,点M是BC的中点,点N是AA1的中点。

(1)求证:MN∥平面A1CD;
(2)过N,C,D三点的平面把长方体ABCD-A1B1C1D1截成两部分几何体,求所截成的两部分几何体的体积的比值。
解:(1)设点P为A的中点,连接MP,NP
∵点M是BC的中点,
∴MP∥CD
∵CD平面A1CD,MP平面A1CD,
∴MP∥平面A1CD
∵点N是AA1的中点,
∴NP∥A1D
∵A1D平面A1CD,NP平面A1CD,
∴NP∥平面A1CD
∵MP∩NP=P,MP平面MNP,NP平面MNP,
∴平面MNP∥平面A1CD
∵MN平面MNP,
∴MN∥平面A1CD。
(2)取BB1的中点Q,连接NQ,CQ
∵点N是AA1的中点,
∴NQ∥AB
∵AB∥CD,
∴NQ∥CD
∴过N,C,D三点的平面NQCD把长方体ABCD-A1B1C1D截成两部分几何体,其中一部分几何体为直三棱柱QBC-NAD,另一部分几何体为直四棱柱B1QCC1-A1NDD1

∴直三棱柱QBC-NAD的体积V1=S△QBC·AB=
∵长方体ABCD-A1B1C1D1的体积V=1×1×2=2,
∴直四棱柱B1QCC1-A1NDD1体积V2=V-V1=

∴所截成的两部分几何体的体积的比值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案