精英家教网 > 高中数学 > 题目详情
已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求弧AC的长.
考点:与圆有关的比例线段
专题:直线与圆
分析:(1)由已知得∠ACD=∠ABC,∠ACB=∠ADC=90°,由此能证明∠BAC=∠CAD.
(2)由∠B=30°,AB=12,由此能求出弧AC的长.
解答: (1)证明:∵AB是⊙O的直径,AC是弦,
直线EF是过点C的⊙O的切线,AD⊥EF于点D,
∴∠ACD=∠ABC,∠ACB=∠ADC=90°
∴∠BAC=∠CAD.
(2)解:∵∠B=30°,AB=12,
∴弧AC的长=
30°
360°
×2π×(
12
2
2=π.
点评:本题考查两角相等的证明,考查弧长的求法,是中档题,解题时要认真审题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正四棱锥P-ABCD的高为3,底面边长为2,E是棱PC的中点,过AE作平面与棱PB、PD分别交于点M、N(M、N可以是棱的端点).
(Ⅰ)当M是PB的中点时,求PN的长;
(Ⅱ)求直线AE与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a<0,函数f(x)=
2x+a,x<1
-x-2a,x≥1
若f(1-a)=f(1+a),则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是p=
t+20,0<t<25,t∈N
100-t,25≤t≤30,t∈N
,该商品的日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?

查看答案和解析>>

科目:高中数学 来源: 题型:

观测站C处在目标A的南偏西20°方向,从A出发有一条南偏东40°走向的公路,在C处观测到与C相距31km公路上的B处有一人正沿此公路向A走去,走20km到达D处,此时测得CD距离21km,求此人在D处距A还有多远?

查看答案和解析>>

科目:高中数学 来源: 题型:

 如图,等腰三角形OAB的顶点A,B的坐标分别为(6,0),(3,3),AB与直线y=
1
2
x交于点C,在△OAB中任取一点P,则点P落在阴影部分的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1
x
<2
和|x|>3同时成立,则x应满足的条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某品牌汽车的4S店对最近100位采用分期付款的购车者进行统计,统计结果如表所示:
付款方式分1期分2期分3期分4期分5期
频数3525a10b
已知分3期付款的频率为0.15,并且4S店销售一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润为2万元,以频率作为概率.
(Ⅰ)求事件A:“购买该品牌汽车的3位顾客中,至多有1位分4期付款”的概率;
(Ⅱ)用X表示销售一辆该品牌汽车的利润,求X的分布列及数学期望E(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)与g(x)和区间D,如果存在唯一x0∈D,使|f(x0)-g(x0)|≤2,则称函数f(x)与g(x)在区间D上的“友好函数”.现给出两个函数:
①f(x)=x2,g(x)=2x-4;     
②f(x)=2
x
,g(x)=x+3;
③f(x)=e-x,g(x)=-
1
x
;   
④f(x)=lnx,g(x)=x+1,
则函数f(x)与g(x)在区间(0,+∞)上为“友好函数”的是
 
.(填正确的序号)

查看答案和解析>>

同步练习册答案