精英家教网 > 高中数学 > 题目详情
1
x
<2
和|x|>3同时成立,则x应满足的条件是
 
考点:其他不等式的解法
专题:不等式的解法及应用
分析:由题意可得
1
x
<2
|x|>3
,即
2x-1
x
>0
x>3或x<-3
,由此求得x的范围.
解答: 解:由若
1
x
<2
和|x|>3同时成立,可得
1
x
<2
|x|>3
,即
2x-1
x
>0
x>3或x<-3
,求得x>3,或x<-3,
故答案为:{x|x>3,或x<-3}.
点评:本题主要考查绝对值不等式、分式不等式的解法,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}是等比数列,已知an>0,an=an+1+an+2,则数列的公比是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;
②已知线性回归方程为
?
y
=3+2
?
x
,当变量x增加1个单位,其预报值平均增加2个单位;
③某项测试成绩满分为10分,现随机抽取30名学生参加测试,得分如图所示,假设得分值的中位数为me,平均值为
.
x
,众数为mo,则me=mo
.
x

④设a、b∈R,若a+b≠6,则a≠3或b≠3;
⑤不等式|x|+|x-1|<a的解集为φ,则a<1.
其中正确命题的序号是
 
(把所有正确命题的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求弧AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)是R上的奇函数,且当x<0时g(x)=-ln(1-x),设函数f(x)=
x3
 (x≤0)
g(x)
 (x>0)
,若f(2-x2)>f(x),则实数x的取值范围是(  )
A、(-∞,1)∪(2,+∞)
B、(-∞,-2)∪(1,+∞)
C、(1,2)
D、(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一抛物线过坐标原点和A(1,h),B(4,0),且OA⊥AB.
(1)求h的值;
(2)求此函数线的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,若a=3,c=7,∠C=60°,则边长b为(  )
A、5B、8
C、5或-8D、-5或8

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈{-2,-1,0,1,2}时,函数y=x2-1的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记[x]表示不大于x的最大整数,n∈N*,则[﹙n+
n2-1
﹚]=
 

查看答案和解析>>

同步练习册答案