精英家教网 > 高中数学 > 题目详情
已知函数g(x)是R上的奇函数,且当x<0时g(x)=-ln(1-x),设函数f(x)=
x3
 (x≤0)
g(x)
 (x>0)
,若f(2-x2)>f(x),则实数x的取值范围是(  )
A、(-∞,1)∪(2,+∞)
B、(-∞,-2)∪(1,+∞)
C、(1,2)
D、(-2,1)
考点:奇偶性与单调性的综合
专题:综合题,函数的性质及应用
分析:先由函数g(x)是奇函数,求出函数g(x)的解析式,再利用f(x)与g(x)的关系得到f(x)的单调性,利用函数单调性解不等式f(2-x2)>f(x),求出实数x的取值范围.
解答: 解:∵函数g(x)是R上的奇函数,且当x<0时,g(x)=-ln(1-x),
∴当x>0时,g(x)=-g(-x)=-[-ln(1+x)]=ln(1+x).
∵函数f(x)=
x3
 (x≤0)
g(x)
 (x>0)

∴当x≤0时,f(x)=x3为单调递增函数,值域(-∞,0].
当x>0时,f(x)=lnx为单调递增函数,值域(0,+∞).
∴函数f(x)在区间(-∞,+∞)上单调递增.
∵f(2-x2)>f(x),
∴2-x2>x,
即x2+x-2<0,
∴(x+2)(x-1)<0,
∴-2<x<1.
∴x∈(-2,1).
故选:D.
点评:本题考查了奇函数的解析式求法、分段函数的单调性研究、函数单调性的应用,属于中档题,确定函数f(x)在区间(-∞,+∞)上单调递增是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c,d是四条不重合的直线,其中c为a在平面α上的射影,d为b在平面α上的射影,则(  )
A、c∥d⇒a∥b
B、a⊥b⇒c⊥d
C、a∥b⇒c∥d
D、c⊥d⇒a⊥b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2log4x-2)(log4x-
1
2
).
(1)当x∈[2,4]时,求该函数的值域;
(2)若f(x)≥mlog4x对于x∈[4,16]恒成立,求m有取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

观测站C处在目标A的南偏西20°方向,从A出发有一条南偏东40°走向的公路,在C处观测到与C相距31km公路上的B处有一人正沿此公路向A走去,走20km到达D处,此时测得CD距离21km,求此人在D处距A还有多远?

查看答案和解析>>

科目:高中数学 来源: 题型:

某游乐园拟建一主题游戏园,该游戏园为四边形区域ABCD,其中三角形区域ABC为主题活动园区,∠ACB=60°;AD、CD为游客通道(不考虑宽度),通道AD、CD围成三角形区域ADC为游客休闲中心,供游客休憩.
(Ⅰ)若AC=20m,BC=24m,求AB的长度.
(Ⅱ)如图,AB=24m,AD与AB垂直,且∠ADC=120°,∠ABC=θ(45°≤θ≤60°).记游客通道长度和为L,写出L关于θ的关系式,并求L的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

1
x
<2
和|x|>3同时成立,则x应满足的条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程(m-1)x2+(3-m)y2=(m-1)(3-m)表示的曲线是双曲线;命题q:函数f(x)=x3-mx在区间(-∞,-1]上为增函数,若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(x)=
log2(1-x),x≤0
f(x-6),x>0
,则f(2015)=(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a,b,c,a=1,b=
3
,∠A=
π
6
则∠B等于(  )
A、
π
3
B、
3
C、
π
3
3
D、
π
4

查看答案和解析>>

同步练习册答案