精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C的对边分别为a,b,c,a=1,b=
3
,∠A=
π
6
则∠B等于(  )
A、
π
3
B、
3
C、
π
3
3
D、
π
4
考点:正弦定理
专题:解三角形
分析:直接利用正弦定理求解即可.
解答: 解:在△ABC中,角A、B、C的对边分别为a,b,c,a=1,b=
3
,∠A=
π
6

由正弦定理可知:sinB=
bsinA
a
=
3
×
1
2
1
=
3
2

B=
π
3
3

故选:C.
点评:本题考查正弦定理的应用,三角形的解法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)是R上的奇函数,且当x<0时g(x)=-ln(1-x),设函数f(x)=
x3
 (x≤0)
g(x)
 (x>0)
,若f(2-x2)>f(x),则实数x的取值范围是(  )
A、(-∞,1)∪(2,+∞)
B、(-∞,-2)∪(1,+∞)
C、(1,2)
D、(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+2x-3且x∈(-2,2],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
,且其函数图象经过点(1,2)
(1)求实数a的值;
(2)判断函数在(0,a]和(1,+∞)的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2+1≥1,命题q:?x∈R,2x≤0.给出下列四种形式的命题:①?p,②?q,③p∨q,④p∧q.其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记[x]表示不大于x的最大整数,n∈N*,则[﹙n+
n2-1
﹚]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,如果B=31°,a=20,b=10,则此三角形(  )
A、有两解B、有一解
C、无解D、有无穷多解

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x-π),g(x)=cos(x+π)则下列结论中正确的是(  )
A、函数y=f(x)•g(x)的最小正周期为2π
B、函数y=f(x)•g(x)的最大值为2
C、将函数y=f(x)的图象向左平移
π
2
单位后得y=g(x)的图象
D、将函数y=f(x)的图象向右平移
π
2
单位后得y=g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

“φ=0”是“函数f(x)=sin(x+φ)为奇函数”的
 
条件.(从“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选择适当的填写)

查看答案和解析>>

同步练习册答案