精英家教网 > 高中数学 > 题目详情

【题目】是等边三角形,边长为4, 边的中点为,椭圆 为左、右两焦点,且经过两点。

(1)求该椭圆的标准方程;

(2)过点轴不垂直的直线交椭圆于 两点,求证:直线的交点在一条定直线上.

【答案】(1)椭圆的方程为(2)证明见解析

【解析】试题分析:(1)由题意得 ,可得b,即得椭圆的标准方程;(2)由对称性知需证直线的交点横坐标为定值,设 ,利用点斜式写出直线方程,解方程组得交点横坐标满足,再设的方程为,代入化简得,联立直线MN方程与椭圆方程,利用韦达定理代入化简即得.

试题解析:解:(1)由题意可知两焦点为,且,因此椭圆的方程为.

(2)①当不与轴重合时,

的方程为,且

联立椭圆与直线消去可得,即

②-①得

,即.

②当轴重合时,即的方程为,即 .

联立①和②消去可得.

综上的交点在直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市需对某环城快速车道进行限速,为了调研该道路车速情况,于某个时段随机对辆车的速度进行取样,测量的车速制成如下条形图:

经计算:样本的平均值,标准差,以频率值作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于或车速大于是需矫正速度.

(1)从该快速车道上所有车辆中任取个,求该车辆是需矫正速度的概率;

(2)从样本中任取个车辆,求这个车辆均是需矫正速度的概率;

(3)从该快速车道上所有车辆中任取个,记其中是需矫正速度的个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分为14分)已知定义域为R的函数是奇函数.

1)求ab的值;

2)若对任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设函数,若在区间上单调,求实数的取值范围;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人为了响应政府“节能减排”的号召,决定各购置一辆纯电动汽车.经了解目前市场上销售的主流纯电动汽车,按续驶里程数(单位:公里)可分为三类车型, .甲从三类车型中挑选,乙从两类车型中挑选,甲、乙两人选择各类车型的概率如表:

已知甲、乙都选类型的概率为.

(1)求的值;

(2)求甲、乙选择不同车型的概率;

(3)某市对购买纯电动汽车进行补贴,补贴标准如下表:

记甲、乙两人购车所获得的财政补贴之和为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一张长为,宽为)的长方形铁皮,准备用它做成一个无盖长方体铁皮容器,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形的一个角上剪下一块边长为的正方形铁皮,作为铁皮容器的底面,用余下材料剪拼后作为铁皮容器的侧面,设长方体的高为,体积为.

(Ⅰ)求关于的函数关系式;

(Ⅱ)求该铁皮容器体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,求函数处的切线方程;

(Ⅱ)令,求函数的极值;

(Ⅲ)若,正实数 满足,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件.今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为元/件(),则新增的年销量(万件).

(1)写出今年商户甲的收益(单位:万元)与的函数关系式;

(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.

查看答案和解析>>

同步练习册答案