精英家教网 > 高中数学 > 题目详情
8.若角β的终边上一点A(-5,m),且tanβ=5,则m=-25,并求β的其它三角函数值.

分析 根据角β的终边上一点A的坐标,以及tanβ的值,求出m的值,进而确定出β的其它三角函数值即可.

解答 解:∵角β的终边上一点A(-5,m),且tanβ=5,
∴$\frac{m}{-5}$=5,即m=-25,
∴A(-5,-25),
∴sinβ=$\frac{-25}{\sqrt{(-5)^{2}+(-25)^{2}}}$=-$\frac{5\sqrt{26}}{26}$,cosβ=$\frac{-5}{\sqrt{(-5)^{2}+(-25)^{2}}}$=-$\frac{\sqrt{26}}{26}$.

点评 此题考查了同角三角函数基本关系的运用,以及任意角的三角函数定义,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知△ABC是等边三角形,有一点D满足$\overrightarrow{AB}$+$\frac{1}{2}\overrightarrow{AC}$=$\overrightarrow{AD}$,且|$\overrightarrow{CD}$|=$\sqrt{3}$,那么$\overrightarrow{DA}$•$\overrightarrow{DC}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2x3-3ax2+1,且x=1为函数f(x)的一个极值点.
(1)求a的值;
(2)证明:f(x)≤2x2-3x2-x+ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某大学四年级某班共50人.其中男生30人.女生20人.毕业前每人必须写一篇毕业论文,共50篇论文,若从50篇论文中,按照男女同学比例的方法共选出5篇进行展出.
(1)求选出的论文中女生写的论文的篇数;
(2)从选出的5篇论文中,求取得的这一篇是女生论文的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知角α的终边上一点P(-$\sqrt{3}$,m),且sinα=$\frac{\sqrt{2}m}{4}$,求cosα,sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了得到函数y=$\frac{1}{2}$cos2x的图象,可以把函数y=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)的图象上所有的点(  )
A.向右平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{12}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有2000名网购者在11月11日当天于某购物网站进行网购消费(每人消费金额不超过 1000元),其中有女士1100名,男士900名,该购物网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分折,如下表(消费金額卑位:元)
女士消费情况:
 消费金额 (0.200) 
[200,400)
 
[400.600)
 
[600,800)
 
[800,1000]
 人数 10 25 35 30 X
男士消费情况况:
消费金额(0.200)
[200,400)

[400.600)

[600,800)

[800.1000]
人数153025Y5
(1)计算算x,y的值;在抽出的200名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者都是男士的概率;
(2)若消费金额不低于600元的网购者为“网购达人,低于600元的网购者为“非网购达人”根据以上统计数据填写答题卡中的2×2列联表,并冋答能否在犯错误的概率不超过0.05的前提下认为“是否为网购达人与性别有关?”
附表:
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005
 k0 2.706 3.841 5.024 6.635 7.879
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别是a,b,c,且$\frac{cosC}{cosB}$=$\frac{3a-c}{b}$.
(Ⅰ)求cosB的值;
(Ⅱ)若b=4$\sqrt{2}$,a=c,求sin(A+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设n∈N*,(x+3)n展开式的所有项系数和为256,则其二项式系数的最大值为6.(用数字作答)

查看答案和解析>>

同步练习册答案