精英家教网 > 高中数学 > 题目详情
15.已知△ABC是等边三角形,有一点D满足$\overrightarrow{AB}$+$\frac{1}{2}\overrightarrow{AC}$=$\overrightarrow{AD}$,且|$\overrightarrow{CD}$|=$\sqrt{3}$,那么$\overrightarrow{DA}$•$\overrightarrow{DC}$=3.

分析 由已知画出图形,得到各向量的关系,求出等边三角形的边长,利用数量积公式解答.

解答 解:由已知得到如图
因为△ABC是等边三角形,有一点D满足$\overrightarrow{AB}$+$\frac{1}{2}\overrightarrow{AC}$=$\overrightarrow{AD}$,且|$\overrightarrow{CD}$|=$\sqrt{3}$,
所以EF∥CD,并且EF=$\frac{\sqrt{3}}{2}$,所以BE=$\sqrt{3}$,AC=2,
所以AD=$\sqrt{A{C}^{2}+C{D}^{2}}=\sqrt{7}$,
$\overrightarrow{DA}$•$\overrightarrow{DC}$=|$\overrightarrow{DA}$||$\overrightarrow{DC}$|cosD=$\sqrt{7}×\sqrt{3}×\frac{CD}{AD}$=$\sqrt{7}×\sqrt{3}×\frac{\sqrt{3}}{\sqrt{7}}$=3;
故答案为:3.

点评 本题考查了平面向量的三角形法则以及数量积公式的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.集合M={1,2,-3m+(m-3)i}(其中i为虚数单位),N={-9,3},且M∩N≠∅,则实数m的值为(  )
A.3B.1C.2D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(6sinx+cosx,7sinx-2cosx),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-2.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在锐角△ABC中,角A、B、C的对边分别为a、b、c,f(A)=4且a=2,求角A及△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知动点A在椭圆 C:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0)上,动点B在直线 x=-2上,且满足 $\overrightarrow{OA}⊥\overrightarrow{OB}$(O为坐标原点),椭圆C上点 $M(\frac{{\sqrt{3}}}{2},3)$到两焦点距离之和为 4$\sqrt{3}$
(I)求椭圆C方程.
(Ⅱ)求|AB|取最小值时点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{alnx+b}{{e}^{x}}$(e是自然对数的底数,其中常数a,n满足a>b,且a+b=1,函数y=f(x)的图象在点(1,f(1))处的切线斜率是2-$\frac{1}{a}$.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=ax+1-3(a>0,a≠1)过定点A,若点A在直线mx+ny=-2(m>0,n>0)上,则$\frac{1}{m}$+$\frac{1}{n}$的最小值为(  )
A.3B.2$\sqrt{2}$C.$\frac{3+2\sqrt{2}}{2}$D.$\frac{3-2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q(q>0),且满足a1=b1=1,a2=b3,a6=b5.(1)求数列{an}的通项公式;
(2)证明:对一切n∈N*,令bn=an•an+1,都有$\frac{1}{4}$≤$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设点A,B的坐标分别为(-a,0),(a,0),直线AC,BC相交于点C,且它们的斜率之积是-$\frac{{b}^{2}}{{a}^{2}}$(常数a,b为正实数).
(Ⅰ)求点C的轨迹E的方程;
(Ⅱ)设O为坐标原点,P,Q为轨迹E上的动点,且OP⊥OQ,求$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若角β的终边上一点A(-5,m),且tanβ=5,则m=-25,并求β的其它三角函数值.

查看答案和解析>>

同步练习册答案