精英家教网 > 高中数学 > 题目详情
9.若an是(2+x)n(n∈N*,n≥2,x∈R)展开式中x2项的二项式系数,则$\lim_{n→∞}(\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n})$=2.

分析 (2+x)n(其中n=2,3,4,…)的展开式,Tr+1,令r=2,可得an,再利用求和公式化简,利用数列的极限即可得出.

解答 解:(2+x)n(其中n=2,3,4,…)的展开式,Tr+1=${C}_{n}^{r}{2}^{n-r}{x}^{r}$,令r=2,可得:T3=2n-2${C}_{n}^{2}$x2
∴an是二项式(2+x)n(其中n=2,3,4,…)的展开式中x的二项式系数,
∴an=${C}_{n}^{2}$=$\frac{n(n-1)}{2}$.
则$\lim_{n→∞}(\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n})$=$\underset{lim}{n→∞}$2$(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n-1}-\frac{1}{n})$=$\underset{lim}{n→∞}$$(2-\frac{2}{n})$=2.
故答案为:2.

点评 本题考查二项式定理的应用,数列求和,数列的极限的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知复数z=x+yi(x,y∈R)满足$|{\overline z}|≤1$,则y≥x-1的概率为(  )
A.$\frac{3}{4}-\frac{1}{2π}$B.$\frac{1}{4}-\frac{1}{2π}$C.$\frac{3}{4}+\frac{1}{2π}$D.$\frac{1}{4}+\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合A={-2,-1,0,2},B={x|x2=2x},则A∩B={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁UA)∩B={-2},求实数p、q、r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若集合M={x|x2-2x<0},N={x||x|>1},则M∩N=(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD与
平面ABCD所成的角依次是$\frac{π}{4}$和$arctan\frac{1}{2}$,AP=2,E、F依次是PB、PC的中点;
(1)求异面直线EC与PD所成角的大小;(结果用反三角函数值表示)
(2)求三棱锥P-AFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和为${S_n}={2^n}-1$,则此数列的通项公式为an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={(x,y)|y=$\frac{1}{{x}^{2}}$}; 
②M={(x,y)|y=log2x}; 
③M={(x,y)|y=2x-2};
④M={(x,y)|y=sinx+1}.
其中是“垂直对点集”的序号是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2-3x+c,(x∈[1,3]的值域为(  )
A.[f(1),f(3)]B.[f(1),f($\frac{3}{2}$)]C.[c-$\frac{9}{4}$,f(3)]D.[f($\frac{3}{2}$),f(3)]

查看答案和解析>>

同步练习册答案