精英家教网 > 高中数学 > 题目详情
我们把形如的函数称为“莫言函数”,并把其与轴的交点关于原点的对称点称为“莫言点”,以“莫言点”为圆心凡是与“莫言函数”图象有公共点的圆,皆称之为“莫言圆”.当时,在所有的“莫言圆”中,面积的最小值   

试题分析:当a=1,b=1时,
则函数 y=与Y轴交于(0,-1)点
则“莫言点”坐标为(0,1),令“莫言圆”的标准方程为x2+(y-1)2=r2
令“莫言圆”与函数 y=图象的左右两支相切,则切点坐标为(),
此时r=
令“莫言圆”与函数 y=图象的下支相切,则切点坐标为(0,-1),此时r=2;
故所有的“莫言圆”中,面积的最小值为3π。
点评:中档题,根据“莫言圆”的圆心坐标及“莫言函数”的解析式,求出“莫言圆”的圆心到函数图象距离的最小值是解答本题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设A、B为双曲线同一条渐近线上的两个不同的点,已知向量=(1,0),,则双曲线的离心率e等于
A.2    B.    C.2或  D. 2或

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线与椭圆+=1有公共的焦点,且与椭圆相交,它们的交点中一个交点的纵坐标是4,求双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

存在两条直线与双曲线相交于ABCD四点,若四边形ABCD是正方形,则双曲线的离心率的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的一个焦点作垂直于实轴的弦 ,是另一焦点,若∠,则双曲线的离心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的焦点为,准线与轴的交点为,点上且,则△的面积为(   )
A.4 B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的离心率为,过右焦点且斜率为的直线交椭圆两点,为弦的中点,为坐标原点.
(1)求直线的斜率
(2)求证:对于椭圆上的任意一点,都存在,使得成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线过定点,动点满足,动点的轨迹为.
(Ⅰ)求的方程;
(Ⅱ)直线交于两点,以为切点分别作的切线,两切线交于点.
①求证:;②若直线交于两点,求四边形面积的最大值.

查看答案和解析>>

同步练习册答案