【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1 , C1F= CC1 .
(1)求平面AEF与平面ABC所成角α的余弦值;
(2)若G为BC的中点,A1G与平面AEF交于H,且设 = ,求λ的值.
【答案】
(1)解:在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1,C1F= CC1.
∴建立以A为坐标原点,AB,AC,AA1分别为x,y,z轴的空间直角坐标系如图:
则A(0,0,0),A1(0,0,6),B(2,0,0),C(0,2,0),E(2,0,2),F(0,2,4),
则 =(2,0,2), =(0,2,4),
设平面AEF的法向量为 =(x,y,z)
则
令z=1.则x=﹣1,y=﹣2,
即 =(﹣1,﹣2,1),
平面ABC的法向量为 =(0,0,1),
则cos< , >= = =
即平面AEF与平面ABC所成角α的余弦值是
(2)解:若G为BC的中点,A1G与平面AEF交于H,
则G(1,1,0),
∵ = ,
∴ = =λ(1,1,﹣6)=(λ,λ,﹣6λ),
= + =(λ,λ,6﹣6λ)
∵A,E,F,H四点共面,
∴设 =x +y ,
即(λ,λ,6﹣6λ)=x(2,0,2)+y(0,2,4),
则 ,得λ= ,x=y= ,
故λ的值为 .
【解析】(1)建立空间坐标系,求出平面的法向量,利用向量法进行求解即可.(2)利用四点共面, =x +y ,建立方程关系进行求解即可.
【考点精析】认真审题,首先需要了解棱柱的结构特征(两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形).
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2-1-lnx,其中a∈R.
(1)若a=0,求过点(0,-1)且与曲线y=f(x)相切的直线方程;
(2)若函数f(x)有两个零点x1,x2,
① 求a的取值范围;
② 求证:f ′(x1)+f ′(x2)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两地相距,货车从甲地匀速行驶到乙地,速度不得超过,已知货车每小时的运输成本(单位:圆)由可变本和固定组成组成,可变成本是速度平方的倍,固定成本为元.
(1)将全程匀速匀速成本(元)表示为速度的函数,并指出这个函数的定义域;
(2)若,为了使全程运输成本最小,货车应以多大的速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法中错误的是
A. 在频率分布直方图中,中位数左边和右边的直方图的面积相等 .
B. 一个样本的方差是,则这组数据的总和等于60.
C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越差.
D. 对于命题使得<0,则,使.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中,. 台体体积公式: , 其中分别为台体上、下底面面积, 为台体高.
(1)证明:直线 平面;
(2)若,, ,三棱锥的体积,求 该组合体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们为了探究函数的部分性质,先列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.004 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
观察表中值随值变化的特点,完成以下的问题.
首先比较容易看得出来:此函数在区间上是递减的;
(1)函数在区间 上递增
当 时,= .
(2)请你根据上面性质作出此函数的大概图像;
(3)试用函数单调性的定义证明:函数在区间上为减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】宜昌市拟在2020年点军奥体中心落成后申办2022年湖北省省运会,据了解,目前武汉,襄阳,黄石等申办城市因市民担心赛事费用超支而准备相继退出,某机构为调查宜昌市市民对申办省运会的态度,选了某小区的100位居民调查结果统计如下:
支持 | 不支持 | 合计 | |
年龄不大于50岁 | 80 | ||
年龄大于50岁 | 10 | ||
合计 | 70 | 100 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过的前提下认为不同年龄与支持申办省运会无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附: , .
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |