精英家教网 > 高中数学 > 题目详情
3.复数Z满足(1-2i)z=(1+i)2,则z对应复平面上的点的坐标为(  )
A.(-$\frac{4}{5}$,$\frac{2}{5}$)B.(-$\frac{2}{5}$,$\frac{3}{5}$)C.($\frac{4}{5}$,-$\frac{2}{5}$)D.($\frac{2}{5}$,$\frac{3}{5}$)

分析 由(1-2i)z=(1+i)2,得$z=\frac{(1+i)^{2}}{1-2i}$,然后利用复数代数形式的乘除运算化简复数z,则z对应复平面上的点的坐标可求.

解答 解:由(1-2i)z=(1+i)2
得$z=\frac{{{{(1+i)}^2}}}{(1-2i)}=\frac{2i}{(1-2i)}=\frac{2i(1+2i)}{(1-2i)(1+2i)}=\frac{-4+2i}{5}=-\frac{4}{5}+\frac{2}{5}i$,
则z对应复平面上的点的坐标为:($-\frac{4}{5}$,$\frac{2}{5}$).
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数f(x)=x3-3x+m的定义域A=[0,2],值域为B,当A∩B=∅时,实数m的取值范围是(-∞,-2)∪(4,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)解不等式|$\frac{1}{lo{g}_{\frac{1}{2}}x}$+2|≥$\frac{3}{2}$
(2)不等式0≤ax+5≤4的整数解是1、2、3、4,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合$A=\{y|y={log_{\frac{1}{2}}}x,\frac{1}{8}≤x≤2\},B=\{x|y=\sqrt{{3^{x-a}}-1}\}$.
(1)若a=2,求A∩B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于函数f(x),若在定义域内存在实数x满足f(-x)=-f(x),则称f(x)为“局部奇函数”,若已知f(x)=x2-2mx+m2-4为定义域R上的“局部奇函数”,则实数m的取值范围是(  )
A.[0,2]B.(-2,2)C.[-2,2]D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于函数f(x)在定义域内用二分法的求解过程中得到f(2014)<0,f(2015)<0,f(2016)>0,则下述描述正确的是(  )
A.函数f(x)在(2014,2015)内不存在零点
B.函数f(x)在(2015,2016)内不存在零点
C.函数f(x)在(2015,2016)内存在零点,并且仅有一个
D.函数f(x)在(2014,2015)内可能存在零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.用列举法表示集合D={(x,y)|y=-x2+8,x∈N,y∈N}为{(0,8),(1,7),(2,4)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,a3=-6,a7=a5+4,则a1等于(  )
A.-10B.-2C.2D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\overrightarrow a$=(m,2),$\overrightarrow b$=(1,m-1),若$\overrightarrow a$∥$\overrightarrow b$,且方向相同,则|$\overrightarrow{a}$|=(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

同步练习册答案