精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=ax2+3x+2,g(x)=lnx
(Ⅰ)设h(x)=f(x)-g(x),求h(x)有两个极值点的充要条件;
(Ⅱ)求证:当a≥0时,不等式f(x)≥g(x)恒成立.

分析 (Ⅰ)求出h(x)的导数,得到关于a的不等式组,求出a的范围即可;
(Ⅱ)问题转化为h(x)=ax2+3x+2-lnx≥0在(0,+∞)上恒成立,分离参数得到$a≥\frac{lnx-(3x+2)}{x^2}$在(0,+∞)上恒成立,根据函数的单调性证明即可.

解答 解:(Ⅰ)因为函数f(x)=ax2+3x+2,g(x)=lnx,
∴h(x)=ax2+3x+2-lnx,
∴${h^'}(x)=2ax+3-\frac{1}{x}=\frac{{2a{x^2}+3x-1}}{x}(x>0)$,
∴h(x)有两个极值点的充要条件是:
方程2ax2+3x-1=0有两个不等的正根,
即$\left\{\begin{array}{l}△=9+8a>0\\{x_1}+{x_2}=-\frac{3}{2a}>0\\{x_1}{x_2}=-\frac{1}{2a}>0\end{array}\right.⇒-\frac{9}{8}<a<0$,
∴h(x)有两个极值点的充要条件是$-\frac{9}{8}<a<0$;
(Ⅱ)a≥0时,不等式f(x)≥g(x)恒成立?
h(x)=ax2+3x+2-lnx≥0在(0,+∞)上恒成立,
即$a≥\frac{lnx-(3x+2)}{x^2}$在(0,+∞)上恒成立,
令$u(x)=lnx-3x-2,{u^'}(x)=\frac{1}{x}-3=\frac{1-3x}{x}(x>0)$,
当$x∈(0,\frac{1}{3})$时u′(x)>0,当$x∈(\frac{1}{3},+∞)$时u′(x)<0,
∴$x=\frac{1}{3}时,u(x{)_{max}}=-ln3-3<0$,
故x∈(0,+∞),恒有$\frac{lnx-(3x+2)}{x^2}<0$,
所以当a≥0时,$a≥\frac{lnx-(3x+2)}{x^2}$在(0,+∞)上恒成立,
即不等式f(x)≥g(x)恒成立.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”,对于集合M={x|ax2-1=0,a>0},N={-$\frac{1}{2}$,$\frac{1}{2}$,1},若M与N“相交”,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=ex+ae-x的导函数f′(x)是偶函数,若|f(x)|≥mx,则m的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项的和Sn满足Sn=2n-1(n∈N*),则数列{anan+1}的前n项的和为$\frac{{2}^{2n+1}-2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x(1-$\frac{2}{{2}^{x}+1}$).
(1)判断f(x)的奇偶性;
(2)证明:当x≠0时,f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=lnx+x2+ax,x=1是函数f(x)的极值点.
(1)求实数a的值,并求函数f(x)的单调递减区间;
(2)设函数g(x)=f(x)-x2+3x,求证:当x≥2时,g(x)<$\frac{1}{4}$(x2-1);
(3)在(2)的条件下,求证:对n∈N*,$\sum_{k=2}^{n+1}$$\frac{1}{g(k)}$>$\frac{3{n}^{2}+5n}{(n+1)(n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-ax2-ln(x+1),其中a∈R.
(1)若x=2是f(x)的极值点,求a的值;
(2)若f(x)在[0,+∞)上的最大值是0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(理科)设函数f(x)=x(ex-1)-ax2(e=2.71828…是自然对数的底数).
(Ⅰ)若a=$\frac{1}{2}$,求f(x)的单调区间;
(Ⅱ)若f(x)在(-1,0)无极值,求a的取值范围;
(Ⅲ)设n∈N*,x>0,求证:ex>1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{n}}{n!}$.注:n!=n×(n-1)×…×2×1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.sin(-$\frac{31π}{6}$)的值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案