分析 (Ⅰ)a=$\frac{1}{2}$时,化简f(x)=x(ex-1)-$\frac{1}{2}$x2,从而求导确定函数的单调性;
(Ⅱ)求出f(x)的导数,得到g(x)=ex+$\frac{{e}^{x}-1}{x}$,h(x)=$\frac{{e}^{x}-1}{x}$,根据函数的单调性判断出g(x)=ex+h(x)<1,得到2a≤1;且g(x)=ex+h(x)>2,从而求出a的值即可;
(Ⅲ)利用数列归纳法证明,假设当n=k时不等式成立,即ex>1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{k}}{k!}$,从而令m(x)=ex-(1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+…+$\frac{{x}^{k}}{k!}$+$\frac{{x}^{k+1}}{(k+1)!}$),显然m(0)=0,m′(x)=ex-(1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{k}}{k!}$)>0,从而证明.
解答 解:(1)a=$\frac{1}{2}$时,f(x)=x(ex-1)-$\frac{1}{2}$x2,
f′(x)=(ex-1)+xex-x=(ex-1)(x+1),
则当x∈(-∞,-1)时,f′(x)>0,
当x∈(-1,0)时,f′(x)<0,
当x∈(0,+∞)时,f′(x)>0,
故f(x)在(-∞,-1),(0,+∞)上单调递增,在(-1,0)上单调递减;
(Ⅱ)若f(x)在(-1,0)无极值,则f(x)在(-1,0)单调,
又f′(x)=(x+1)ex-2ax-1,
①若f(x)在(-1,0)单调递减,则f′(x)≤0在(-1,0)恒成立,
于是2a≤$\frac{(x+1{)e}^{x}-1}{x}$=ex+$\frac{{e}^{x}-1}{x}$,
令g(x)=ex+$\frac{{e}^{x}-1}{x}$,h(x)=$\frac{{e}^{x}-1}{x}$,
下面证明h(x)在(-∞,0)上单调递增,
∵h′(x)=$\frac{(x-1{)e}^{x}+1}{{x}^{2}}$,令r(x)=(x-1)ex+1,则r′(x)=xex,
x<0时,r′(x)<0,r(x)递减,r(x)>r(0)=0,
h′(x)>0,h(x)在(-∞,0)递增;
当x∈(-1,0)时,由g(x)=ex+h(x)是增函数,从而g(x)>g(-1)=1,
于是2a≤g(x),得2a≤1,a≤$\frac{1}{2}$;
②若f(x)在(-1,0)单调递增,则f′(x)≥0在(-1,0)恒成立,
于是2a≥g(x),当x∈(-1,0)时,由ex>1+x,得h(x)=$\frac{{e}^{x}-1}{x}$<1,
g(x)=ex+h(x)<2,从而2a≥2,a≥1;
综上,a∈(-∞,$\frac{1}{2}$]∪[1,+∞)时,f(x)在(-1,0)内无极值;
(Ⅲ)用数学归纳法证明:
①当n=1时,令h(x)=ex-x-1,
h′(x)=ex-1>0,h(0)=0;
故h(x)>h(0)=0,
故ex>x+1;
②假设当n=k时不等式成立,即ex>1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{k}}{k!}$,
当n=k+1时,令m(x)=ex-(1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+…+$\frac{{x}^{k}}{k!}$+$\frac{{x}^{k+1}}{(k+1)!}$),
显然m(0)=0,m′(x)=ex-(1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{k}}{k!}$)>0,
故m(x)>m(0)=0,
即ex>1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{k}}{k!}$+$\frac{{x}^{k+1}}{(k+1)!}$成立,
综上所述,ex>1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{n}}{n!}$.
点评 本题考查了导数的综合应用及数学归纳法的应用,同时考查了分类讨论的思想,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -e | B. | $\frac{1}{e}$ | C. | e2 | D. | -$\frac{1}{e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com