精英家教网 > 高中数学 > 题目详情
2.设函数$f(x)=\frac{lnx}{x}$,则f(x)的极大值为(  )
A.-eB.$\frac{1}{e}$C.e2D.-$\frac{1}{e}$

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极大值即可.

解答 解:函数f(x)的定义域是(0,+∞),
f′(x)=$\frac{1-lnx}{{x}^{2}}$,
令f′(x)>0,解得:0<x<e,
令f′(x)<0,解得:x>e,
∴f(x)在(0,e)递增,在(e,+∞)递减,
∴f(x)极大值=f(e)=$\frac{1}{e}$,
故选:B.

点评 本题考查了函数的单调性.极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=ex+ae-x的导函数f′(x)是偶函数,若|f(x)|≥mx,则m的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-ax2-ln(x+1),其中a∈R.
(1)若x=2是f(x)的极值点,求a的值;
(2)若f(x)在[0,+∞)上的最大值是0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(理科)设函数f(x)=x(ex-1)-ax2(e=2.71828…是自然对数的底数).
(Ⅰ)若a=$\frac{1}{2}$,求f(x)的单调区间;
(Ⅱ)若f(x)在(-1,0)无极值,求a的取值范围;
(Ⅲ)设n∈N*,x>0,求证:ex>1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{n}}{n!}$.注:n!=n×(n-1)×…×2×1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.数列{an}中,满足an+2=2an+1-an,且a1,a4031是函数f(x)=$\frac{1}{3}$x3-4x2+6x-1的极值点,则log2a2016的值是(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,x=5是函数y=f(x)的一个极值点
(1)求a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\frac{{x}^{2}}{2}$+(1-k)x-klnx.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若k为正数,且存在x0使得f(x0)<$\frac{3}{2}$-k2,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.sin(-$\frac{31π}{6}$)的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线C的方程为$\frac{x^2}{4}$-$\frac{y^2}{5}$=1,其左、右焦点分别是F1,F2.已知点 M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足$\frac{{\overrightarrow{P{F_1}}•\overrightarrow{M{F_1}}}}{{|{\overrightarrow{P{F_1}}}|}}$=$\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,则S${\;}_{△{P}{M}{F_1}}}$-S${\;}_{△{P}{M}{F_2}}}$=2.

查看答案和解析>>

同步练习册答案