精英家教网 > 高中数学 > 题目详情
12.已知双曲线C的方程为$\frac{x^2}{4}$-$\frac{y^2}{5}$=1,其左、右焦点分别是F1,F2.已知点 M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足$\frac{{\overrightarrow{P{F_1}}•\overrightarrow{M{F_1}}}}{{|{\overrightarrow{P{F_1}}}|}}$=$\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,则S${\;}_{△{P}{M}{F_1}}}$-S${\;}_{△{P}{M}{F_2}}}$=2.

分析 利用$\frac{{\overrightarrow{{P}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{P}{F_1}}}|}}=\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,得出∠MF1P=∠MF1F2,进而求出直线PF1的方程为y=$\frac{5}{12}$(x+3),与双曲线联立可得P(3,$\frac{5}{2}$),由此即可求出${S_{△{P}{M}{F_1}}}-{S_{△{P}{M}{F_2}}}$.

解答 解:∵$\frac{{\overrightarrow{{P}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{P}{F_1}}}|}}=\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,
∴|$\overrightarrow{M{F}_{1}}$|cos∠MF1P=|$\overrightarrow{M{F}_{1}}$|cos∠MF1F2
∴∠MF1P=∠MF1F2
∵cos∠MF1F2=$\frac{5}{\sqrt{26}}$
∴cos∠PF1F2=2cos2∠MF1F2-1=$\frac{12}{13}$
∴tan∠PF1F2=$\frac{5}{12}$
∴直线PF1的方程为y=$\frac{5}{12}$(x+3)
与双曲线联立可得P(3,$\frac{5}{2}$),
∴|PF1|=$\frac{13}{2}$,
∵sin∠MF1F2=$\frac{1}{\sqrt{26}}$
∴${S}_{△PM{F}_{1}}$=$\frac{1}{2}$×$\frac{13}{2}$×$\sqrt{26}$×$\frac{1}{\sqrt{26}}$=$\frac{13}{4}$,
∵${S}_{△PM{F}_{2}}$=$\frac{1}{2}×\frac{5}{2}×1$=$\frac{5}{4}$,
∴${S_{△{P}{M}{F_1}}}-{S_{△{P}{M}{F_2}}}$=2,
故答案为:2

点评 本题考查向量知识的运用,考查三角形面积的计算,考查学生分析解决问题的能力,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数$f(x)=\frac{lnx}{x}$,则f(x)的极大值为(  )
A.-eB.$\frac{1}{e}$C.e2D.-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一口袋中有5只球,标号分别为1,2,3,4,5.
(1)如果从袋中同时取出3只,以ξ表示取出的三只球的最小号码,求ξ的分布列;
(2)如果从袋中取出1只,记录号码后放回袋中,再取1只,记录号码后放回袋中,这样重复三次,以η表示三次中取出的球的最小号码,求η的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线是3x-4y=0,则该双曲线的离心率为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设点P为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)上一点,F1,F2分别是左右焦点,I是△PF1F2的内心,若△IPF1,△IPF2,△IF1F2的面积S1,S2,S3满足2(S1-S2)=S3,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点F是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点,过点F且斜率为$\frac{{\sqrt{3}}}{3}$的直线l与圆x2+y2=a2相切,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{5}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=-x3+x2-ax+1是R上的单调递减函数,则实数a的取值范围为(  )
A.[-3,+∞)B.(-∞,-$\frac{1}{3}$]C.[$\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中为奇函数的是(  )
A.y=sin|x|B.y=sin2xC.y=-sinx+2D.y=sinx+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中正确的个数是命题(  )
①命题“若cosx=cosy,则x=y”的逆否命题是真命题;
②命题“任意x∈(0,+∞),2x>1”的否定是“任意x∉(0,+∞),2x≤1”;
③若命题p为真,命题?q为真,则命题p且q为真.
④命题“若x=3,则x2-2x-3=0”的否命题是“x≠3,则x2-2x-3≠0”
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案