分析 (1)连结AC、EF,证明EF∥PC,利用直线与平面平行的判定定理证明EF∥平面PAC,
(2)求出对面三角形EAD的面积,利用等体积法转化求解几何体的体积即可.
解答
解:(1)证明:连结AC、EF
∵点E、F分别是边BC、PB的中点
∴EF∥PC…(4分).
又EF?平面PAC,PC?平面PAC…(5分)
∴当点E是BC的中点时,EF∥平面PAC…(6分)
(2)∵PA⊥平面ABCD,且四边形ABCD为矩形.
∴${S_{△EAD}}=\frac{1}{2}AD•AB=1$,…(9分)
∴${V_{E-PAD}}={V_{P-EAD}}=\frac{1}{3}{S_{EAD}}•PA=\frac{1}{3}$…(12分)
点评 本题考查直线与平面平行的判定定理以及几何体的体积的求法,考查空间想象能力以及计算能力,转化思想的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 5 | C. | $\sqrt{13}$ | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com