精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$)的图象与x轴的两个相邻交点是A(0,0),B(6,0),C是函数f(x)图象的一个最高点.a,b,c分别为△ABC的三个内角A,B,C的对边,满足(a+c)(sinC-sinA)=(a+b)sinB.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向左平移1个单位后,纵坐标不变,横坐标伸长为原来的$\frac{π}{3}$倍,得到函数g(x)的图象,求函数g(x)的单调递减区间.

分析 (Ⅰ)由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由特殊点的坐标求出φ的值,解直角三角形求出A,可得f(x)的解析式.
(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的单调性求得函数g(x)的单调递减区间.

解答 解:(Ⅰ)∵函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$)的图象与x轴的两个相邻交点是A(0,0),B(6,0),
∴sinφ=0,∴φ=0,且$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=6,∴ω=$\frac{π}{6}$,∴f(x)=Msin($\frac{π}{6}$x).
∵C是函数f(x)图象的一个最高点,a,b,c分别为△ABC的三个内角A,B,C的对边,
满足(a+c)(sinC-sinA)=(a+b)sinB,∴(a+c)(c-a)=(a+b)b,
整理可得$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=-$\frac{1}{2}$,
即cosC=-$\frac{1}{2}$,∴C=$\frac{2π}{3}$.
由题意可得CA=CB,∴∠A=$\frac{π}{6}$,设AB的中点为D,则CD⊥AB,且点D(3,0),点C(3,M),
根据tan∠A=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$=$\frac{CD}{AD}$=$\frac{M}{3}$,∴M=$\sqrt{3}$,∴f(x)=$\sqrt{3}$sin($\frac{π}{6}$x).
(Ⅱ)将函数f(x)=$\sqrt{3}$sin($\frac{π}{6}$x)的图象向左平移1个单位后,纵坐标不变,
可得y=$\sqrt{3}$sin$\frac{π}{6}$(x+1)=$\sqrt{3}$sin($\frac{π}{6}$x+$\frac{π}{6}$)的图象;
再把横坐标伸长为原来的$\frac{π}{3}$倍,
得到函数g(x)=$\sqrt{3}$sin($\frac{3}{π}$•$\frac{π}{6}$x+$\frac{π}{6}$)=$\sqrt{3}$sin($\frac{1}{2}$x+$\frac{π}{6}$)的图象.
令2kπ+$\frac{π}{2}$≤$\frac{x}{2}$+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得4kπ+$\frac{2π}{3}$≤x≤4kπ+$\frac{8π}{3}$,
故函数g(x)的单调递减区间为[4kπ+$\frac{2π}{3}$,4kπ+$\frac{8π}{3}$],k∈Z.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由特殊点的坐标求出φ的值,解直角三角形求出A.还考查了函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设f(x)是定义在R上的奇函数,且f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x≥0}\\{g(x),x<0}\end{array}\right.$,则g(f(-8))=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={-1,0,1},B={x|x=sin$\frac{2k+1}{2}$π,k∈Z},则∁AB=(  )
A.?B.0C.{0}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2-3x+2<0},B={x|y=lg(3-x)},则A∩B=(  )
A.{x|1<x<2}B.{x|1<x<3}C.{x|2<x<3}D.{x|x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,已知其俯视图是正三角形,则该四棱锥的外接球的表面积是(  )
A.$\frac{19π}{3}$B.$\frac{22π}{3}$C.19πD.22π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C$:\frac{x^2}{a^2}-\frac{y^2}{4}=1$的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=7,则|PF2|等于(  )
A.1B.13C.4或10D.1或13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.
(Ⅰ) 根据已知条件完成下面的2×2列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?
对服务满意对服务不满意合计
对商品满意80
对商品不满意
合计200
(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满
意的次数为随机变量X,求X的分布列和数学期望EX.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
P(K2≥k)0.150.100.050.0250.010
k2.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-1),若$\overrightarrow{a}$∥($\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$•$\overrightarrow{b}$=$-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若命题“任意x∈R,ax2+2x+a≥0”为真命题,则实数a的取值范围是a≥1.

查看答案和解析>>

同步练习册答案