精英家教网 > 高中数学 > 题目详情
18.若命题“任意x∈R,ax2+2x+a≥0”为真命题,则实数a的取值范围是a≥1.

分析 由任意x∈R,ax2+2x+a≥0,可知当a=0时,不等式化为x≥0,不合题意;当a≠0时,则有不等式左边的二次三项式所对应的二次函数开口向上,且判别式小于等于0,由此列不等式组求解.

解答 解:∵任意x∈R,ax2+2x+a≥0,
∴当a=0时,不等式化为x≥0,不合题意;
当a≠0时,要使任意x∈R,ax2+2x+a≥0恒成立,
则$\left\{\begin{array}{l}{a>0}\\{{2}^{2}-4{a}^{2}≤0}\end{array}\right.$,解得:a≥1.
∴实数a的取值范围是a≥1.
故答案为:a≥1.

点评 本题考查命题的真假判断与应用,考查恒成立问题的求解方法,体现了“分类讨论”的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$)的图象与x轴的两个相邻交点是A(0,0),B(6,0),C是函数f(x)图象的一个最高点.a,b,c分别为△ABC的三个内角A,B,C的对边,满足(a+c)(sinC-sinA)=(a+b)sinB.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向左平移1个单位后,纵坐标不变,横坐标伸长为原来的$\frac{π}{3}$倍,得到函数g(x)的图象,求函数g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三棱锥B-ACD的每个顶点都在表面积为16π的球O的球面上,且AB⊥平面BCD,△BCD为等边三角形,AB=2BC,则三棱锥B-ACD的体积为(  )
A.3B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设{an}是等比数列,且a1=$\frac{3}{2}$,S3=$\frac{9}{2}$,则它的通项公式为an=(  )
A.$\frac{3}{2}$•($\frac{1}{2}$)n-1B.$\frac{3}{2}•{({-\frac{1}{2}})^{n-2}}$C.$\frac{3}{2}$•(-$\frac{1}{2}$)n-2D.$\frac{3}{2}$•(-2)n-1或$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题p:?x0∈R,x0>1的否定是(  )
A.¬p:?x∈R,x≤1B.¬p:?x∈R,x≤1C.¬p:?x∈R,x<1D.¬p:?x∈R,x<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>1,函数f(x)=loga(a2x-2ax-2),则使f(x)>0的x的取值范围是(  )
A.(-∞,0)B.(-∞,loga3)C.(0,+∞)D.(loga3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知平面内两点A(8,-6),B(2,2).
(1)求AB的中垂线l的方程;
(2)一束光线从B点射向y轴,若反射光线恰好经过点A,求反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线ax-y+2a+1=0与圆x2+y2=9的位置关系是(  )
A.相离B.相交C.相切D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a、b为实数,命题甲:ab>b2,命题乙:$\frac{1}{b}<\frac{1}{a}<0$,则甲是乙的(  )条件.
A.充分不必要B.必要不充分C.充要D.非充分非必要

查看答案和解析>>

同步练习册答案