精英家教网 > 高中数学 > 题目详情
3.设a>1,函数f(x)=loga(a2x-2ax-2),则使f(x)>0的x的取值范围是(  )
A.(-∞,0)B.(-∞,loga3)C.(0,+∞)D.(loga3,+∞)

分析 令t=ax,有t>0,则y=loga(t2-2t-2),若使f(x)>0,由对数函数的性质,可转化为t2-2t-2>1,解可得t的取值范围,由指数函数的性质,分析可得答案.

解答 解:令t=ax,有t>0,则y=loga(t2-2t-2),
若使f(x)>0,即loga(t2-2t-2)>0,
由对数函数的性质,a>1,y=logax是增函数,
故有t2-2t-2>1,
解可得,t>3或t<-1,
又因为t=ax,有t>0,
故其解为t>3,
即ax>3,又有a>1,
由指数函数的图象,可得x的取值范围是(loga3,+∞),
故选:D.

点评 本题考查指数、对数函数的运算与性质,解题时,要联想这两种函数的图象,特别是图象上的特殊点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知双曲线C$:\frac{x^2}{a^2}-\frac{y^2}{4}=1$的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=7,则|PF2|等于(  )
A.1B.13C.4或10D.1或13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某个多面体的三视图,则该多面体的体积为(  )
A.72B.$90\sqrt{3}$C.$108\sqrt{2}$D.144

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b∈R,且a>b,则下列不等式中恒成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.a2>b2C.2a>2bD.$\frac{a}{b}>1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若命题“任意x∈R,ax2+2x+a≥0”为真命题,则实数a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点(2,3)的直线l被两平行线L1:2x-5y+9=0与L2:2x-5y-7=0所截线段AB的中点恰在直线x-4y-1=0上,则直线l的方程为(  )
A.4x-5y+7=0B.5x-4y+11=0C.2x-3y-4=0D.4x+5y-23=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{\begin{array}{l}|{{2^x}-1}|,x<1\\ 2-x,x≥1\end{array}\right.$,若关于x的函数y=2f2(x)+2bf(x)+1有6个不同的零点,则实数b的取值范围是(-$\frac{3}{2}$,-$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x•|x|-2x.
(1)判断函数f(x)的奇偶性,并证明;
(2)求函数f(x)的零点;
(3)画出y=f(x)的图象,并结合图象写出方程f(x)=m有三个不同实根时,实数m的取值范围;
(4)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=loga(3+3x+4x-m)的值域为R,则m的取值范围为m≥3.

查看答案和解析>>

同步练习册答案