| A. | 4x-5y+7=0 | B. | 5x-4y+11=0 | C. | 2x-3y-4=0 | D. | 4x+5y-23=0 |
分析 设AB的中点C(a,b),由线段AB的中点恰在直线x-4y-1=0上,知a-4b-1=0,由点C到两平行直线的距离相等,知|2a-5b+9|=|2a-5b-7|,故b=-1,a=4b+1=-3.由此能求出l的直线方程.
解答 解:设AB的中点C(a,b),
∵线段AB的中点恰在直线x-4y-1=0上,
∴a-4b-1=0,a=4b+1
∵点C到两平行直线的距离相等,
∴|2a-5b+9|•$\frac{1}{\sqrt{29}}$=|2a-5b-7|•$\frac{1}{\sqrt{29}}$,
把a=4b+1代入,得
|2(4b+1)-5b+9|=|2(4b+1)-5b-7|
∴|3b+11|=|3b-5|
3b+11=-3b+5
∴b=-1,a=4b+1=-3
∵直线l过点(2,3)和点(-3,-1),
∴kl=$\frac{3+1}{2+3}$=$\frac{4}{5}$
∴l的直线方程:4x-5y+7=0.
故选A.
点评 本题考查直线方程的求法,是基础题.解题时要认真审题,仔细解答,注意点到直线的距离公式的灵活运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x3 | B. | y=2x3-x2 | C. | y=2x3+x2 | D. | y=x5-x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,loga3) | C. | (0,+∞) | D. | (loga3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{e}\;,\;ln4}]$ | B. | $({\frac{1}{2e}\;,\;ln4}]$ | C. | $[{\frac{ln4}{4}\;,\;\frac{1}{2e}})$ | D. | $[{\frac{ln4}{4}\;,\;\frac{1}{e}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A⊆B | B. | B⊆A | C. | B?A | D. | A?B |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{56}}{8}$ | B. | $\frac{\sqrt{85}}{7}$ | C. | $\frac{\sqrt{85}}{6}$ | D. | $\frac{\sqrt{13}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com