精英家教网 > 高中数学 > 题目详情
16.已知双曲线C$:\frac{x^2}{a^2}-\frac{y^2}{4}=1$的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=7,则|PF2|等于(  )
A.1B.13C.4或10D.1或13

分析 由双曲线的方程、渐近线的方程求出a,由双曲线的定义求出|PF2|.

解答 解:由双曲线的方程、渐近线的方程可得$\frac{2}{a}$=$\frac{2}{3}$,∴a=3.
由双曲线的定义可得||PF2|-7|=6,∴|PF2|=1或13,
故选D.

点评 本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,由双曲线的方程、渐近线的方程求出a是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.用0,1,2,…,299给300名高三学生编号,并用系统抽样的方法从中抽取15名学生的数学成绩进行质量分析,若第一组抽取的学生的编号为8,则第四组抽取的学生编号为68.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an}是首项为1的等差数列,前n项和Sn,S5=20,则公差为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.实数x,y满足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,则z=4x+3y的最大值为(  )
A.3B.4C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$)的图象与x轴的两个相邻交点是A(0,0),B(6,0),C是函数f(x)图象的一个最高点.a,b,c分别为△ABC的三个内角A,B,C的对边,满足(a+c)(sinC-sinA)=(a+b)sinB.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向左平移1个单位后,纵坐标不变,横坐标伸长为原来的$\frac{π}{3}$倍,得到函数g(x)的图象,求函数g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$,若|f(a)|≥2,则实数a的取值范围是$({-∞,\frac{1}{2}}]∪[{8,+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,若$\frac{{{a_{n+1}}}}{a_n}$为定值,且a4=2,则a2a6等于(  )
A.32B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知变量x,y之间的一组数据如表:则y与x的线性回归直线必过点(  )
x0123
y1357
A.($\frac{3}{2}$,4)B.($\frac{3}{2}$,2)C.(1,4)D.(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>1,函数f(x)=loga(a2x-2ax-2),则使f(x)>0的x的取值范围是(  )
A.(-∞,0)B.(-∞,loga3)C.(0,+∞)D.(loga3,+∞)

查看答案和解析>>

同步练习册答案