精英家教网 > 高中数学 > 题目详情
6.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,已知其俯视图是正三角形,则该四棱锥的外接球的表面积是(  )
A.$\frac{19π}{3}$B.$\frac{22π}{3}$C.19πD.22π

分析 根据四棱锥的三视图知该四棱锥底面为矩形,高为$\sqrt{3}$的四棱锥;
还原出长方体,设该四棱锥的外接球球心为O,求出外接球的半径,
计算外接球的表面积.

解答 解:根据四棱锥的三视图,知该四棱锥底面为矩形,高为$\sqrt{3}$的四棱锥;
且侧面PAB⊥底面ABCD,如图所示;

还原出长方体是长为2,宽为1,高为$\sqrt{3}$.
设该四棱锥的外接球球心为O,则
过O作OM⊥平面PAB,M为△PAB的外心,
作ON⊥平面ABCD,则N为矩形ABCD对角线的交点;
∴OM=$\frac{1}{2}$,ON=$\frac{1}{3}$×$\sqrt{3}$=$\frac{\sqrt{3}}{3}$;
∴外接球的半径满足
R2=ON2+AN2=${(\frac{\sqrt{3}}{3})}^{2}$+${(\frac{\sqrt{{1}^{2}{+2}^{2}}}{2})}^{2}$=$\frac{19}{12}$,
∴外接球的表面积为
S=4πR2=4π×$\frac{19}{12}$=$\frac{19π}{3}$.
故选:A.

点评 本题考查了由空间几何体三视图求几何体外接球的表面积的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别是a,b,c,且$\frac{tanA}{tanB}=\frac{2c-b}{b}$.
(1)将函数$f(x)=sin({2x+φ})({0<φ<\frac{π}{2}})$的图象向右平移角A个单位可得到函数g(x)=-cos2x的图象,求φ的值;
(2)若△ABC的外接圆半径为1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若将函数y=2cos2x的图象向右平移$\frac{π}{12}$个单位长度,则平移后图象的一个对称中心为(  )
A.($\frac{5}{6}$π,0)B.($\frac{7π}{6}$,0)C.(-$\frac{π}{3}$,0)D.($\frac{π}{6}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=2x-1的值域是(  )
A.(-∞,1)B.(-∞,0)∪(0,+∞)C.(-1,+∞)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.中国将于今年9月3日至5日在福建省厦门市主办金砖国家领导人第九次会晤.某志愿者队伍共有5人负责接待,其中3人担任英语翻译,另2人担任俄语翻译.现从中随机选取2人,恰有1个英语翻译,1个俄语翻译的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$)的图象与x轴的两个相邻交点是A(0,0),B(6,0),C是函数f(x)图象的一个最高点.a,b,c分别为△ABC的三个内角A,B,C的对边,满足(a+c)(sinC-sinA)=(a+b)sinB.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向左平移1个单位后,纵坐标不变,横坐标伸长为原来的$\frac{π}{3}$倍,得到函数g(x)的图象,求函数g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来; 若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为(  )
A.$\frac{1}{2}$B.$\frac{15}{32}$C.$\frac{11}{32}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x+1},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$,则f(f(3))=(  )
A.$\frac{4}{3}$B.$\frac{2}{3}$C.$-\frac{4}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题p:?x0∈R,x0>1的否定是(  )
A.¬p:?x∈R,x≤1B.¬p:?x∈R,x≤1C.¬p:?x∈R,x<1D.¬p:?x∈R,x<1

查看答案和解析>>

同步练习册答案